GCE AS MARKING SCHEME

SUMMER 2019

AS (NEW)
 FURTHER MATHEMATICS
 UNIT 3 FURTHER MECHANICS A 2305U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE FURTHER MATHEMATICS

AS UNIT 3 FURTHER MECHANICS A

SUMMER 2019 MARK SCHEME

Q1	Solution	Mark	Notes
(a)	Use of Hooke's Law $\begin{aligned} & 21=\frac{\lambda x}{0 \cdot 15} \\ & \lambda=35 \quad(\mathrm{~N}) \end{aligned}$	M1 A1 A1 [3]	cao
(b)	Using expression for EE or KE Energy at start, $\mathrm{EE}=\frac{\lambda x^{2}}{2(0.15)} \quad\left(\frac{35(0.09)^{2}}{2(0.15)}=0.945\right)$ Energy at end, $\mathrm{KE}=\frac{1}{2}(0 \cdot 1) v^{2} \quad\left(=0 \cdot 05 v^{2}\right)$ Conservation of energy $\begin{aligned} & 0 \cdot 05 v^{2}=0 \cdot 945 \\ & v=4 \cdot 3 \quad\left(\mathrm{~ms}^{-1}\right) \quad(2 \text { sig. figs }) \end{aligned}$	M1 A1 A1 M1 A1 [5]	FT λ and x from (a) Used with EE and KE cao
	Total for Question 1	8	

Q2	Solution	Mark	Notes
(a)	$\begin{aligned} & \mathbf{a}=\frac{\mathrm{d} \mathbf{v}}{\mathrm{~d} t} \\ & \mathbf{a}=6 t \mathbf{i}-8 \mathbf{j}-2 e^{-t} \mathbf{k} \end{aligned}$	M1 A1 [2]	Correct differentiation of at least one term All correct
(b)	$\begin{aligned} & \mathbf{F}=m \mathbf{a}=0 \cdot 5\left(6 t \mathbf{i}-8 \mathbf{j}-2 e^{-t} \mathbf{k}\right) \\ & \mathbf{F} . \mathbf{v}=\left(3 t \times 3 t^{2}\right)+(-4 \times-8 t)+\left(-e^{-t} \times 2 e^{-t}\right) \\ & \text { F. } \mathbf{v}=9 t^{3}+32 t-2 e^{-2 t} \end{aligned}$	B1 M1 A1 [3]	FT a from part (a) Correct method for dot product cao
(c)	$\begin{aligned} & \mathbf{v} \cdot \mathbf{v}=\left(3 t^{2}\right)^{2}+(-8 t)^{2}+\left(2 e^{-t}\right)^{2} \\ & \mathrm{KE}=\frac{1}{2} m \mathbf{v} \cdot \mathbf{v} \\ & \mathrm{KE}=\frac{1}{2 \times 2}\left(9 t^{4}+64 t^{2}+4 e^{-2 t}\right) \\ & \left(\mathrm{KE}=\frac{9}{4} t^{4}+16 t^{2}+e^{-2 t}\right) \end{aligned}$	M1 m1 A1 [3]	cao
(d)		B1 B1 [2]	Any equivalent statement, mathematical or otherwise Convincing
	Total for Question 2	10	

Q3	Solution	Mark	Notes
(a)	Comparison of coefficients $\begin{array}{ll} \text { i } & 60+168 t=62+160 t \\ & t=0 \cdot 25 \\ & \\ \text { j } & 2+132 t=p t \\ t=0 \cdot 25 \Rightarrow p=140 \\ & \\ \text { k } \quad & 4=3+q t \\ & t=0 \cdot 25 \Rightarrow q=4 \end{array}$	M1 A1 A1 A1 [4]	Comparison attempted for any component Convincing Convincing
(b)	$\begin{aligned} & \mathbf{r}_{B}-\mathbf{r}_{A}=(2-8 t) \mathbf{i}+(-2+8 t) \mathbf{j}+(-1+4 t) \mathbf{k} \\ & A B^{2}=(2-8 t)^{2}+(-2+8 t)^{2}+(-1+4 t)^{2} \\ & \left(A B^{2}=144 t^{2}-72 t+9\right) \end{aligned}$	M1 A1 [2]	Correct method. Must lose \mathbf{i}, \mathbf{j}, \mathbf{k} and be linear expressions
(c)	$\begin{aligned} & A B^{2}=144 t^{2}-72 t+9=0 \cdot 6^{2} \\ & A B^{2}=144 t^{2}-72 t+8 \cdot 64=0 \\ & \left(50 t^{2}-25 t+3=0\right) \end{aligned}$ Solving quadratic $t=0 \cdot 2,(0 \cdot 3) \text { (hours) }$ Alarms first activated at 9.12 (a.m.) Alternative Solution Taking out a common factor of $(4 t-1)^{2}$ from the unsimplified form in (b) $\begin{aligned} & A B^{2}=(4 t-1)^{2}\left[(-2)^{2}+2^{2}+1\right]=9(4 t-1)^{2} \\ & 9(4 t-1)^{2}=0 \cdot 6^{2} \quad \text { or } \quad 3(4 t-1)=0 \cdot 6 \end{aligned}$ Solving quadratic $t=0 \cdot 2,(0 \cdot 3) \text { (hours) }$ Alarms first activated at 9.12 (a.m.)	m1 A1 A1 [4] (M1) (m1) (A1) (A1) ([4])	FT quadratic from (b) Attempt to solve resulting in at least one value of t. FT quadratic from (b) provided it is of the form $a(4 t-1)^{2}$ Attempt to solve resulting in at least one value of t.
	Total for Question 3	10	

Q4	Solution	Mark	Notes
(a)	At maximum speed $F=R \quad$ (N2L with $a=0$) $\begin{aligned} & F=\frac{P}{v} \\ & 2000=\frac{80 \times 1000}{v} \\ & v=40 \quad\left(\mathrm{~ms}^{-1}\right) \end{aligned}$	M1 M1 A1 [3]	Used Used, si cao
(b)	$F=\frac{0 \cdot 8 \times 80 \times 1000}{20} \quad(=3200)$ N2L $\begin{aligned} & F-R-m g \sin \alpha=m a \\ & F-2000-1200 g \times \frac{1}{20}=1200 a \\ & a=0.51 \quad\left(\mathrm{~ms}^{-2}\right) \end{aligned}$	B1 M1 A1 A1 A1 [5]	si All forces, dim. correct F and R opposing Allow one error FT candidates F cao
(c)	Any valid reason eg. Resistance could vary with speed.	$\begin{aligned} & \text { E1 } \\ & {[1]} \end{aligned}$	
	Total for Question 4	9	

Q5	Solution	Mark	Notes
(a)	Resolve vertically $\begin{aligned} & 490 \sqrt{3} \cos \theta=75 g \\ & \cos \theta=\frac{\sqrt{3}}{2} \\ & \theta=30^{\circ} \end{aligned}$	M1 A1 A1 [3]	Convincing
(b)	N2L towards centre $\begin{aligned} & 490 \sqrt{3} \sin \theta=75 a \\ & 490 \sqrt{3} \sin \theta=75(1.4)^{2} r \end{aligned}$ length of chain $=l$ $l \sin \theta=r$ $490 \sqrt{3} \sin \theta=75(1.4)^{2} l \sin \theta$ $\begin{aligned} & l=\frac{490 \sqrt{3}}{75(1.4)^{2}} \\ & l=5 \cdot 77(3502 \ldots) \quad(\mathrm{m}) \end{aligned}$	M1 A1 m1 m1 A1 [5]	$a=\omega^{2} r$ cao Accept $\frac{10 \sqrt{3}}{3}$
	Total for Question 5	8	

Q6	Solution	Mark	Notes
(a)	Conservation of energy $\begin{aligned} & \frac{1}{2} m u^{2}=\frac{1}{2} m v^{2}+m g r(1-\cos \theta) \\ & v^{2}=u^{2}-2 g r(1-\cos \theta) \\ & v^{2}=60 g-20 g(1-\cos \theta) \\ & \text { or } \quad v^{2}=\left\{\begin{array}{c} 40 g+20 g \cos \theta \\ 20 g(2+\cos \theta) \end{array}\right. \end{aligned}$	M1 A1 A1 A1 [4]	KE and PE in dim. correct equation KE PE
(b)	N2L towards centre $\begin{aligned} & R-m g \cos \theta=\frac{m v^{2}}{10} \\ & R=\frac{m}{10}(40 g+20 g \cos \theta)+m g \cos \theta \\ & R=4 m g+2 m g \cos \theta+m g \cos \theta \\ & R=4 m g+3 m g \cos \theta \\ & R=m g(4+3 \cos \theta) \end{aligned}$	M1 A1 m1 A1 [4]	Dim. correct equation, R and $m g \cos \theta$ opposing Substitute their v^{2} Convincing
(c)	Test for $R=0$ $\begin{aligned} & m g(4+3 \cos \theta)=0 \\ & \cos \theta=-\frac{4}{3} \end{aligned}$ which is not possible (i.e. car will perform loop) Alternative solution Consider R when $\theta=180$ $R=m g(4+3(-1))=m g>0$ (i.e. car will perform loop)	M1 A1 [2] (M1) (A1) ([2])	si Convincing si Convincing
(d)	$\begin{aligned} \text { Loss in PE } & =m g(30-28) \\ & =2 m g \end{aligned}$ Work-energy principle $\begin{aligned} & \frac{m g}{32} \times d=2 m g \\ & d=2 \times 32 \\ & d=64 \quad(\mathrm{~m}) \end{aligned}$	B1 M1 A1 [3]	Used, $F \times d=E$ cao
	Total for Question 6	13	

Q7	Solution	Mark	Notes
(a)	Conservation of momentum $m u+0=m v_{A}+m v_{B}$ Restitution $\begin{gathered} v_{B}-v_{A}=-e(-u) \\ v_{A}+v_{B}=u \\ -v_{A}+v_{B}=e u \\ 2 v_{A}=(1-e) u \\ v_{A}=\frac{1}{2}(1-e) u \\ v_{B}=\frac{1}{2}(1+e) u \end{gathered}$	M1 A1 M1 A1 m1 A1 A1 [7]	Allow 1 sign error All correct Allow one sign error All correct, any form One variable eliminated cao, oe cao, oe
(b)	$\begin{align*} \text { Loss in KE }= & \frac{1}{2} m u^{2}-\frac{1}{2} m\left[\left(\frac{1}{4} u\right)^{2}+\left(\frac{3}{4} u\right)^{2}\right] \\ & =\frac{1}{2} m u^{2}\left(1-\frac{5}{8}\right)=\frac{3}{16} m u^{2} \tag{J} \end{align*}$	M1 A1 [2]	cao

(c)	Velocity of B after $2^{\text {nd }}$ collision $=\frac{1}{2}\left(1-e_{1}\right) \times \frac{3}{4} u$ For no further collisions to occur, Vel. of B after $2^{\text {nd }}$ collision \geq Vel. of A after $1^{\text {st }}$ collision $\begin{aligned} & \frac{1}{2}\left(1-e_{1}\right) \times \frac{3}{4} u \geq \frac{1}{4} u \\ & 3-3 e_{1} \geq 2 \\ & e_{1} \leq \frac{1}{3} \end{aligned}$ Alternative solution Vel. of B after $2^{\text {nd }}$ collision $=\frac{1}{2}\left(1-e_{1}\right) \times \frac{3}{4} u$ If $e_{1} \leq \frac{1}{3}$ then $1-e_{1} \geq \frac{2}{3}$ Vel. of B after $2^{\text {nd }}$ collis $\geq \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} u=\frac{1}{4} u=v_{A}$ Vel. of B after $2^{\text {nd }}$ collision \geq Vel. of A after $1^{\text {st }}$ collision	M1 M1 A1 [3] (M1) (M1) (M1)	FT (a) FT (a) Convincing FT (a) FT (a) Convincing
	Total for Question 7	12	

