GCE MARKING SCHEME

SUMMER 2017

MATHEMATICS - S2
0984-01

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

\begin{tabular}{|c|c|c|c|}
\hline Ques \& Solution \& Mark \& Notes

\hline 1(a)

(b) \& $$
\begin{gathered}
\mathrm{E}(X)=2.0, \mathrm{E}(Y)=1.6 \\
\mathrm{E}(W)=\mathrm{E}(X) \mathrm{E}(Y) \\
=3.2 \\
\operatorname{Var}(X)=1.2, \operatorname{Var}(Y)=1.28 \\
E\left(X^{2}\right)=\operatorname{Var}(X)+[E(X)]^{2}=5.2 \\
E\left(Y^{2}\right)=\operatorname{Var}(Y)+[E(Y)]^{2}=3.84 \\
\operatorname{Var}(W)=E\left(X^{2}\right) E\left(Y^{2}\right)-[E(X) E(Y)]^{2} \\
=9.73 \\
\mathrm{P}(W=0)=\mathrm{P}\{(X=0) \cup(Y=0)\} \\
=\mathrm{P}(X=0)+\mathrm{P}(Y=0)-\mathrm{P}\{(X=0) \cap(Y=0)\} \\
=0.6^{5}+0.8^{8}-0.6^{5} \times 0.8^{8} \\
=0.232
\end{gathered}
$$ \& B1

M1
A1
B1
M1A1
A1
M1
A1
M1
m1
A1

A1 \& | si |
| :--- |
| si |
| Allow $\begin{aligned} & \mathrm{P}(W=0)=1-\mathrm{P}(X \geq 0) \mathrm{P}(Y \geq 0) \\ & =1-(1-\mathrm{P}(X=0))(1-\mathrm{P}(Y=0)) \\ & =1-\left(1-0.6^{5}\right)\left(1-0.8^{8}\right) \\ & =0.232 \end{aligned}$ |

\hline 2 \& | Under H_{0}, the number, X, of breakdowns in 100 days is $\operatorname{Poi}(80)$ which is approx $\mathrm{N}(80,80)$ $\begin{aligned} z & =\frac{64.5-80}{\sqrt{80}} \\ & =-1.73 \\ p \text {-value } & =0.0418 \end{aligned}$ |
| :--- |
| There is strong evidence to conclude that the mean number of breakdowns per day has been reduced. | \& \[

$$
\begin{aligned}
& \text { B1B1 } \\
& \text { M1A1 } \\
& \text { A1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& | Award M1A0 for an incorrect or no continuity correction and FT for the following marks $64 \rightarrow z=-1.79 \rightarrow p$-value $=0.0367$ $63.5 \rightarrow z=-1.84 \rightarrow p$-value $=0.0329$ |
| :--- |
| FT the p-value |

\hline 3(a)
(b)

(c) \& | $\begin{aligned} 90^{\text {th }} \text { percentile } & =\mu+1.282 \sigma \\ & =128 \end{aligned}$ |
| :--- |
| Let $X=$ weight of an apple, $Y=$ weight of a pear |
| Let S denote the sum of the weights of 10 apples |
| Then $\mathrm{E}(S)=1100$ $\begin{aligned} \operatorname{Var}(S) & =10 \times 14^{2} \\ & =1960 \\ z & =\frac{1000-1100}{\sqrt{1960}} \\ & =(-) 2.26 \\ \operatorname{Prob} & =0.01191 \end{aligned}$ |
| Let $U=X_{1}+X_{2}+X_{3}-Y_{1}-Y_{2}$ $\mathrm{E}(U)=3 \times 110-2 \times 160=10$ $\operatorname{Var}(U)=3 \times 14^{2}+2 \times 16^{2}=1100$ |
| We require $\mathrm{P}(U>0)$ $\begin{aligned} z & =\frac{0-10}{\sqrt{1100}} \\ & =(-) 0.30 \\ \text { Prob } & =0.6179 \end{aligned}$ | \& M1

A1
B1
M1
A1
m1
A1
A1
M1
A1
M1A1
m1
A1
A1 \& si, condone incorrect notation

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Ques \& Solution \& Mark \& Notes \\
\hline 4(a) \& Let \(x, y\) denote distance travelled by models A,B respectively.
\[
\begin{aligned}
\& \quad \bar{x}=166.9 ; \bar{y}=163.9 \\
\& \text { Standard error }=\sqrt{\frac{2 \times 2.5^{2}}{8}} \quad(=1.25) \\
\& 95 \% \text { confidence limits are } \\
\& \quad 166.9-163.9 \pm 1.96 \times 1.25 \\
\& \text { giving }[0.55,5.45]
\end{aligned}
\] \& \begin{tabular}{l}
B1 B1 \\
M1A1 \\
M1A1 \\
A1
\end{tabular} \& \\
\hline (b) \& The lower end of the interval will be 0 if
\[
\begin{aligned}
\& 1.25 z=3 \\
\& z=2.4 \\
\& \text { Tabular value }=0.008(2) \text { cao } \\
\& \text { Smallest confidence level }=98.4 \%
\end{aligned}
\] \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\text { A1 }
\end{gathered}
\] \& \begin{tabular}{l}
FT their SE and \(\bar{x}, \bar{y}\) \\
(for the first two marks only)
\end{tabular} \\
\hline 5(a)(i) \& \begin{tabular}{l}
Under \(\mathrm{H}_{0}, X\) is \(\mathrm{B}(50,0.75)\) \\
Since \(p>0.5\), we consider \(X^{\prime}\) which is \(\mathrm{B}(50,0.25)\)
\[
\begin{aligned}
\& P(X \leq 31)=P\left(X^{\prime} \geq 19\right)=0.0287 \\
\& P(X \geq 44)=P\left(X^{\prime} \leq 6\right)=0.0194
\end{aligned}
\] \\
Significance level \(=0.0481\)
\end{tabular} \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 } \\
\& \text { A1 }
\end{aligned}
\] \& si \\
\hline (ii) \& If \(p=0.5\),
\[
\begin{aligned}
\mathrm{P}\left(\text { Accept } \mathrm{H}_{0}\right) \& =\mathrm{P}(32 \leq X \leq 43) \\
\& =1-0.9675=0.0325
\end{aligned}
\] \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 }
\end{gathered}
\] \& \\
\hline (b)(i)

(ii) \& \begin{tabular}{l}
Let Y now denote the number of heads so that under H_{0}, Y is $\mathrm{B}(200,0.75) \cong \mathrm{N}(150,37.5)$
$$
\begin{aligned}
z & =\frac{139.5-150}{\sqrt{37.5}} \\
& =(-) 1.71
\end{aligned}
$$

Tabular value $=0.0436$ p-value $=0.0872$ (accept 0.0873)

There is insufficient evidence to reject H_{0}.

 \&

B1

M1A1

A1

A1

A1

A1

 \&

Award M1A0 for incorrect or no continuity correction but FT for following marks

$$
\begin{aligned}
& 139 \rightarrow z=-1.80 \rightarrow p \text {-value }=0.0359 \\
& 138.5 \rightarrow z=-1.88 \rightarrow p \text {-value }=0.0301
\end{aligned}
$$

Penultimate A1 for doubling line above FT the p-value
\end{tabular}

\hline
\end{tabular}

Ques	Solution	Mark	Notes
(iii)	PDF $=$ derivative of above line $=\frac{1}{(b-a) y^{2}}$ M1		

