

GCE MARKING SCHEME

SUMMER 2017

MATHEMATICS - S2 0984-01

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

S2 - June 2017 - Markscheme

Ques	Solution	Mark	Notes
1(a)	E(X) = 2.0, E(Y) = 1.6	B1	si
	E(W) = E(X)E(Y)	M1	
	= 3.2	A1	
	Var(X) = 1.2, Var(Y) = 1.28	B1	si
	$E(X^{2}) = Var(X) + [E(X)]^{2} = 5.2$	M1A1	
	$E(Y^2) = \text{Var}(Y) + [E(Y)]^2 = 3.84$	A1	
	$Var(W) = E(X^2)E(Y^2) - [E(X)E(Y)]^2$	M1	Allow
	= 9.73	A1	
(b)	$P(W = 0) = P\{(X = 0) \cup (Y = 0)\}$	M1	$P(W = 0) = 1 - P(X \ge 0)P(Y \ge 0)$
	$= P(X = 0) + P(Y = 0) - P\{(X = 0) \cap (Y = 0)\}$	m1	=1 - (1 - P(X = 0))(1 - P(Y = 0))
	$=0.6^5+0.8^8-0.6^5\times0.8^8$	A1	$=1-(1-0.6^5)(1-0.8^8)$
	=0.232	A1	= 0.232
2	Under H_0 , the number, X , of breakdowns in 100		
	days is Poi(80) which is approx N(80,80)	B1B1	
	$z = \frac{64.5 - 80}{\sqrt{80}}$	M1A1	Award M1A0 for an incorrect or
	$\sqrt{80}$	141111	no continuity correction and FT
	=-1.73	A1	for the following marks $64 \rightarrow z = -1.79 \rightarrow p$ -value = 0.0367
	p-value = 0.0418	A1	$63.5 \rightarrow z = -1.84 \rightarrow p\text{-value} = 0.0367$ $63.5 \rightarrow z = -1.84 \rightarrow p\text{-value} = 0.0329$
	There is strong evidence to conclude that the mean	A 1	· · · · · · · · · · · · · · · · · · ·
	number of breakdowns per day has been reduced.	A1	FT the <i>p</i> -value
2(0)	90^{th} percentile = $\mu + 1.282\sigma$	M1	
3(a)	= 128	A1	
	Let $X = $ weight of an apple, $Y =$ weight of a pear	AI	
(b)	Let S denote the sum of the weights of 10 apples		
(~)	Then $E(S) = 1100$	B 1	
	$Var(S) = 10 \times 14^2$	M1	
	= 1960	A1	
	1000 – 1100		
	$z = \frac{1000 1100}{\sqrt{1960}}$	m1	
	= (-) 2.26	A1	
	- () 2.20 Prob = 0.01191	A1	
(c)	Let $U = X_1 + X_2 + X_3 - Y_1 - Y_2$	M1	si, condone incorrect notation
	$E(U) = 3 \times 110 - 2 \times 160 = 10$	A 1	si, condone incorrect notation
	$Var(U) = 3 \times 110 - 2 \times 160 = 10$ $Var(U) = 3 \times 14^{2} + 2 \times 16^{2} = 1100$	A1 M1A1	
	We require $P(U > 0)$	111111	
		m.1	
	$z = \frac{0 - 10}{\sqrt{1100}}$	m1	
	= (-) 0.30	A1	
	-(-) 0.30 Prob = 0.6179	A1	
	1100 0.0177	AI	

Ques	Solution	Mark	Notes
4 (a)	Let <i>x</i> , <i>y</i> denote distance travelled by models A,B		
	respectively.		
	$\bar{x} = 166.9; \bar{y} = 163.9$	B1 B1	
	Standard error = $\sqrt{\frac{2 \times 2.5^2}{8}}$ (=1.25)	M1A1	
	95% confidence limits are 166.9 – 163.9 ± 1.96 × 1.25 giving [0.55,5.45]	M1A1 A1	
(b)	The lower end of the interval will be 0 if $1.25z = 3$ $z = 2.4$ Tabular value = $0.008(2)$ cao Smallest confidence level = 98.4%	M1 A1 A1 A1	FT their SE and \bar{x}, \bar{y} (for the first two marks only)
5(a)(i)	Under H_0 , X is $B(50,0.75)$	B1	si
	Since $p > 0.5$, we consider X' which is B(50,0.25)	M1	
	$P(X \le 31) = P(X' \ge 19) = 0.0287$	A1	
	$P(X \ge 44) = P(X' \le 6) = 0.0194$	A1	
	Significance level = 0.0481	A1	
(ii)	If $p = 0.5$, P(Accept H ₀) = P(32 \le X \le 43) = 1 - 0.9675 = 0.0325	M1 A1	
(b)(i)	Let Y now denote the number of heads so that under H_0 , Y is $B(200,0.75) \cong N(150,37.5)$ 139.5-150	B1	Award M1A0 for incorrect or no continuity correction but FT for following marks
	$z = \frac{139.5 - 130}{\sqrt{37.5}}$	M1A1	$139 \rightarrow z = -1.80 \rightarrow p$ -value = 0.0359
		A1	$138.5 \rightarrow z = -1.88 \rightarrow p$ -value = 0.0301
	=(-)1.71 Tabular value = 0.0436	A1	Penultimate A1 for doubling line
	p-value = 0.0872 (accept 0.0873)	A1	above
(ii)	There is insufficient evidence to reject H_0 .	A1	FT the p-value
(11)	2.10.2.2.1.5 modification of racine to reject ray.		

Ques	Solution	Mark	Notes
6(a)(i)	$f(x) = \frac{1}{b-a}, a \le x \le b$ = 0 otherwise	B1	Allow <
(ii)	$E(X^2) = \frac{1}{b-a} \int x^2 \mathrm{d}x$	M1	
	$=\frac{1}{b-a}\left[\frac{x^3}{3}\right]_a^b$	A1	Condone omission of limits
	$=\frac{b^3-a^3}{3(b-a)}$	A1	
	$=\frac{(b-a)(b^2+ab+a^2)}{3(b-a)}$	A1	
(iii)	$=\frac{(b^2+ab+a^2)}{3}$		
, ,	$Var(X) = E(X^2) - (E(X))^2$	M1	
	$= \frac{b^2 + ab + a^2}{3} - \left(\frac{a^2 + 2ab + b^2}{4}\right)$	A1	
	$=\frac{4b^2+4ab+4a^2-3a^2-6ab-3b^2}{12}$ $(b-a)^2$	A1	Convincing
	$=\frac{(b-a)^2}{12}$		
(b)(i)	$E(Y) = \frac{1}{b-a} \int \frac{1}{x} dx$	M1	
	$=\frac{1}{b-a}[\ln x]_a^b$	A1	Condone omission of limits
	$=\frac{\ln b - \ln a}{b - a}$	A1	
(ii)	$P(Y \le y) = P\left(\frac{1}{X} \le y\right)$	M1	
	$= P\left(X \ge \frac{1}{y}\right)$	A1	
	$=\frac{b-\frac{1}{y}}{b-a}$		

Ques	Solution	Mark	Notes
(iii)	PDF = derivative of above line 1	M1	
	$={(b-a)y^2}$	A1	