GCE MARKING SCHEME

SUMMER 2017

MATHEMATICS - M1 0980-01

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

MATHEMATICS M1 (June 2017)

Markscheme

Q Solution
Mark
Notes

1(a)

N2L applied to lift,upwards +ve
M1 dimensionally correct $15000,1200 \mathrm{~g}$ opposing No extra forces.
$15000-1200 g=1200 a$
$15000-1200 \times 9.8=1200 a$

A1
$a=\underline{2.7}$

1(b)

N2L applied to crate, down +ve
$50 g-R=50 a$
$R=50(9.8-0.2)$
$R=\underline{480(\mathrm{~N})}$
dimensionally correct R and 50 g opposing. No extra forces.
A1
A1

Q Solution

2(a) Impulse on $Q=2(7.5-(-3))$ $\mathrm{I}=\underline{21(\mathrm{Ns})}$

2(b) Conservation of momentum

$$
\begin{aligned}
& 6 \times 5+2 \times(-3)=6 v+2 \times 7.5 \\
& v=\underline{1.5\left(\mathrm{~ms}^{-1}\right)}
\end{aligned}
$$

2(c) Restitution equation

$$
\begin{aligned}
& 7.5-1.5=-e(-3-5) \\
& e=\underline{0.75}
\end{aligned}
$$

2(d) speed after rebound $=7.5 \times 0.6$

$$
=4.5\left(\mathrm{~ms}^{-1}\right)
$$

Mark
Notes

M1
A1 magnitude required.

M1 equation required.
Allow 1 sign error
A1
A1
cao speed required

M1 allow one sign error
Ft v
A1 $\quad \mathrm{Ft} v$
A1 cao

M1
A1 cao allow -4.5

Q Solution
Mark
Notes
3.

3(a) Moments about D
M1 dimen correct equation All forces, no extra
$40 g \times 0.1+20 g \times 0.7=R_{C} \times 1.4$
$R_{C}=\underline{126(\mathrm{~N})}$
Resolve vertically
B1 any correct moment
A1 correct equation
A1 cao

M1 dimen correct equation All forces, no extra
$R_{C}+R_{D}=40 g+20 g$
$R_{D}=\underline{462(\mathrm{~N})}$
A1
A1 cao
Alternative method
Two simultaneous equations award B1 M1 A1 M1 A1 A1cao A1cao

3(b)

Moments about C
$40 g(x-1.9)+R_{D} \times 1.4=20 g \times 0.7$
Equilibrium on point of collapse
when $R_{D}=0$.
or if moments about point not C
$R_{C}=60 \mathrm{~g}$, (and $R_{D}=0 \mathrm{implied}$).
M1
$40 g(x-1.9)=20 g \times 0.7$
$x=\underline{2.25(\mathrm{~m})}$

M1 dimen correct equation All forces, no extra
oe

4(a) using $v=u+a t, u=0, v=15, t=50$
$15=0+50 a$ $a=\underline{0.3\left(\mathrm{~ms}^{-2}\right)}$

4(b) N2L $T-R=m a$
$300-R=800 \times 0.3$
$R=300-240$ $R=\underline{60(\mathrm{~N})}$

4(c) using $s=u t+0.5 a t^{2}, u=0, a=0.3(\mathrm{c}), t=50$
$s=0.5 \times 0.3 \times 50^{2}$
$s=375$
Distance used in braking $=500-375=125$

Using $v^{2}=u^{2}+2 a s, u=15, v=0, s=125(\mathrm{c}) \quad$ M1 oe
$0=15^{2}+2 \times a \times 125$
$a=-\frac{15^{2}}{2 \times 125}$
$a=-0.9$
$800 \times(-)(0.9)=(-) 720$
N2L
$-B-R=m a$
$B=\underline{660(\mathrm{~N})}$

Alternative
$(-) F=800 \times(-)(0.9)$
$F=720$
Force exerted by brakes $=720-60$

$$
=\underline{660(\mathrm{~N})}
$$

M1 dim correct equation
A1 $\mathrm{Ft} a$
A1 cao

M1 oe
$\mathrm{A} 1 \quad \mathrm{FT} a$

A1

B1 $\mathrm{ft} a$
M1 dim correct equation
A1 cao
(A1) cao

5(a) $\quad \sin \alpha=\frac{3}{5}$
$4 g-T=4 a$
N2L applied to second particle
$T-6 g \sin \alpha=6 a$
Adding $4 g-6 g \times \frac{3}{5}=10 a$
$a=\underline{0.04 g}=\underline{0.392\left(\mathrm{~ms}^{-2}\right)}$
$T=\underline{3.84 g}=\underline{37.632(\mathrm{~N})}$

B1
M1 Dim correct equation. T and weight opposing \sin / \cos required.
A1
m1
A1 cao mag req. accept 0.4
A1 cao accept 37.6/7

5(b) Using $v^{2}=u^{2}+2 a s, u=0, a=0.392$ (c), $s=1.5 \quad$ M1 oe
$v^{2}=2 \times 0.04 g \times 1.5$ $\mathrm{A} 1 \quad \mathrm{Ft} a$
$v=\frac{\sqrt{3 g}}{5}=\underline{1.0844\left(\mathrm{~ms}^{-1}\right)}$
A1 cao

5(c) Using $v=u+a t, v=0, u=\frac{\sqrt{3 g}}{5}$ (c), $a=(\pm) 0.6 g \quad$ M1 \quad oe
$0=\frac{\sqrt{3 g}}{5}-0.6 g t$
A1 \quad Ft v from (b)
$t=0.1844$
Required time $=\underline{0.37(\mathrm{~s})}$

A1 cao
A1 $\mathrm{Ft} t$, 2dp required.

Q Solution Mark Notes
6.

Take moments about B
$(1.2 g+2 g+0.8 g) x$ $=1.2 g \times 2.5+2 g \times 1.5+0.8 g \times 0.6$
$x=\underline{1.62(\mathrm{~m})}$

M1 dimensionally correct 4 terms equation, condone no g throughout.

B1 any correct moment
A1 correct equation
A1

Resolve perpendicular to plane
$R=45 g \cos \alpha=(36 g=352.8)$
$F=0.5 \times R=(18 g=176.4)$
N2L parallel to plane

For greatest T
$T=45 g \sin \alpha+F$
$T=27 g+18 g$
$T=45 g=441(\mathrm{~N})$

N2L parallel to plane

For least T
$45 g \sin \alpha=T+F$
$T=45 g \sin \alpha-F$
$T=27 g-18 g$
$T=\underline{9}=88.2(\mathrm{~N})$

M1 accept $\sin \alpha$
A1
m1

M1 \quad or N2L with $a=0$
Dimensionally correct
All forces, T and wt opp.
A1 $\quad a=0$

A1 cao

M1 \quad or N2L with $a=0$
Dimensionally correct
All forces, T and wt opp.
F in opposite direction to previous N2L.

A1 $a=0$

A1 cao

Condone absence of 'greatest/least' but if present must be correct for A1.

Q Solution
Mark
from $A B(y)$

	Area	from $A F(x)$	from $A B(y)$	
$A B E F$	180	5	9	B1
$B C D$	90	15	6	B1
Lamina	270	x	y	B1

Moments about $A F$
$270 x=180 \times 5+90 \times 15$
$270 x=2250$
$x=\frac{25}{3}=8.3$

Moments about $A B$
$270 y=180 \times 9+90 \times 6$
$270 y=2160$
$y=\underline{8}$

8(b) Identification of correct triangle
$\tan \theta=\left(\frac{10-25 / 3}{18-8}\right)$
$\theta=\tan ^{-1}\left(\frac{5}{30}\right)$
$\theta=\underline{9.5^{(\mathrm{c})}}$ or $\theta=\underline{0.165^{(\mathrm{c})}}$

M1

M1

M1
areas correct, allow areas in proportion 2:1:3.

A1 cao

A1 cao

A1 $\mathrm{Ft} x, y$

A1 FT x, y units not required but if present must be correct.

