wjec cbac

GCE MARKING SCHEME

SUMMER 2017

MATHEMATICS - FP2 0978-01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Ques	Solution	Mark	Notes
1	Consider $f(-x) = \sec(-x) + (-x)\tan(-x)$	M1	M0 if particular value used
	$= \sec x + x \tan x (= f(x))$	A1 A1	This line must be seen
	Therefore f is even.	AI	
2	2222 + 5 $222 + 8$ 2 2		
	$\int_{0}^{2} \frac{2x^{2} + 5}{x^{2} + 4} dx = \int_{0}^{2} \frac{2x^{2} + 8}{x^{2} + 4} dx - \int_{0}^{2} \frac{3}{x^{2} + 4} dx$	M1A1	
	$= \left[2x\right]_{0}^{2} - \frac{3}{2} \left[\tan^{-1}\frac{x}{2}\right]_{0}^{2}$	A1B1	Award the B1 for a correct integration of $\frac{k}{r^2 + 4}$
	$=4-rac{3}{8}\pi$	A1	$x^{-} + 4$
3	$-8i = 8(\cos 270^{\circ} + i\sin 270^{\circ})$	B1B1	B1 modulus, B1 argument
	$Root1 = 2(cos 90^{\circ} + isin90^{\circ})$	M1M1	
			M1for $\sqrt[3]{mod}$, M1 for arg/3
	= 2i	A1	Special case – B1 for spotting 2i
	$Root2 = 2(\cos 210^\circ + i\sin 210^\circ)$	M1	
	$=-\sqrt{3}-i$	A1	
	$Root3 = 2(\cos 330^\circ + i\sin 330^\circ)$	A1	
	$=\sqrt{3}-i$	AI	
4(a)	Using deMoivre's Theorem, $z^{n} + z^{-n} = \cos n\theta + i\sin n\theta + \cos(-n\theta) + i\sin(-n\theta)$ $= \cos n\theta + i\sin n\theta + \cos(n\theta) - i\sin(n\theta)$ $= 2\cos n\theta$	M1 A1	
	$z^{n} - z^{-n} = \cos n\theta + i\sin n\theta - \cos(-n\theta) - i\sin(-n\theta)$	M1	
(b)	$=2isinn\theta$	A1	
	$(z+z^{-1})^5 = z^5 + 5z^3 + 10z + 10z^{-1} + 5z^{-3} + z^{-5}$ oe	M1A1	
	$= (z^{5} + z^{-5}) + 5(z^{3} + z^{-3}) + 10(z + z^{-1})$	A1	
	$= 2\cos 5\theta + 10\cos 3\theta + 20\cos \theta$	A1	
	$32\cos^5\theta = 2\cos 5\theta + 10\cos 3\theta + 20\cos \theta$		
	$\cos^5\theta = \frac{1}{16}\cos 5\theta + \frac{5}{16}\cos 3\theta + \frac{5}{8}\cos \theta$	A1	

FP2 – June 2017 - Mark Scheme

Ques	Solution	Mark	Notes
(c)	$\int_{0}^{\pi/2} \cos^{5}\theta d\theta = \int_{0}^{\pi/2} \left(\frac{1}{16}\cos 5\theta + \frac{5}{16}\cos 3\theta + \frac{5}{8}\cos \theta\right) d\theta$	M1	FT from (b)
	$= \left[\frac{1}{80}\sin 5\theta + \frac{5}{48}\sin 3\theta + \frac{5}{8}\sin \theta\right]_0^{\pi/2}$	A1	No A marks if no working
	$= \frac{1}{80} - \frac{5}{48} + \frac{5}{8}$	A1	Award FT mark only if answer
	$=\frac{8}{15}$	A1	less that 1
5	Rewrite the equation in the form $2\sin 2\theta \sin 3\theta = \sin 3\theta$	M1A1	Accept answers in degrees
	$\sin 3\theta (2\sin 2\theta - 1) = 0$	A1	recept unswers in degrees
	Either $\sin 3\theta = 0$	M1	
	$3\theta = n\pi$ giving $\theta = \frac{n\pi}{3}$	A1	
	Or		
	$\sin 2\theta = \frac{1}{2}$	M1	
	$2\theta = \left(2n + \frac{1}{2} \pm \frac{1}{3}\right)\pi$	A1	
	giving $\theta = \left(n + \frac{1}{4} \pm \frac{1}{6}\right)\pi$	A1	Accept equivalent forms
6(a)	Let $\frac{24x^2 + 31x + 9}{(x+1)(2x+1)(3x+1)} = \frac{A}{x+1} + \frac{B}{2x+1} + \frac{C}{3x+1}$ $= \frac{A(2x+1)(3x+1) + B(x+1)(3x+1) + C(x+1)(2x+1)}{(x+1)(2x+1)(3x+1)}$	M1	
	x = -1 gives $A = 1$	A1	
	$x = -\frac{1}{2} \text{ gives } B = 2$ x = -1/3 gives C = 6	A1 A1	FT their <i>A</i> , <i>B</i> , <i>C</i> if possible
(b)(i)	$\int_{0}^{2} f(x) dx = \int_{0}^{2} \frac{1}{x+1} dx + \int_{0}^{2} \frac{2}{2x+1} dx + \int_{0}^{2} \frac{6}{3x+1} dx$	M1	Their answer should be $ln(3^{A}5^{B/2}7^{C/3})$ but only FT if this gives lnN
	$= \left[\ln(x+1)\right]_{0}^{2} + \left[\ln(2x+1)\right]_{0}^{2} + 2\left[\ln(3x+1)\right]_{0}^{2}$	A2	Award A1 for 2 correct integrals
(ii)	$(= \ln 3 + \ln 5 + 2 \ln 7)$ = ln 735 cao	A1	
	The integral cannot be evaluated because the interval of integration contains points at which the integrand is not defined.	B1	

7(a)	$\sqrt{(x-a)^2 + y^2} = x + a$	M1	
	$(x-a)^2 + y^2 = (x+a)^2$	A1 A1	Convincing
	$x^{2} - 2ax + a^{2} + y^{2} = x^{2} + 2ax + a^{2}$ $y^{2} = 4ax$	AI	
	y = 4ax		
(b)	EITHER		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2at, \frac{\mathrm{d}y}{\mathrm{d}t} = 2a$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2a}{2at} = \frac{1}{t}$	A1	
	dx 2at t OR		
	$2y\frac{dy}{dx} = 4a$	(M1)	
		(A1)	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2a}{y} = \frac{1}{t}$	()	
	Gradient of normal $= -t$	A1	
	The equation of the normal is	A1	$y = -tx + at^3 + 2at$
(c)	$y - 2at = -t(x - at^2)$		
(()	EITHER		
	The normal intersects the parabola again where $2as - 2at = -t(as^2 - at^2)$	M1	
	=-at(s-t)(s+t)	A1	
	Cancelling $a(s-t)$ both sides because $s \neq t$,	A1 A1	
	2 = -t(s+t)		
	$s = -\frac{2}{t} - t$	A1	
	OR The normal intersects the parabola again where		
	$2as = -ats^{2} + at^{3} + 2at$ $ts^{2} + 2s - 2t - t^{3} = 0$	(M1) (A1)	
	Solving,		
	$s = \frac{-2 \pm \sqrt{4 + 8t^2 + 4t^4}}{2t}$	(M1)	
		(A1)	
	$= -\frac{2}{t} - t, t$		
	(Rejecting t), 2	(A1)	
	$s = -\frac{2}{t} - t$		

GCE Maths (FP2) MS Summer 2017