шјес
cbac

GCE MARKING SCHEME

SUMMER 2017

MATHEMATICS - C2 0974/01

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Mathematics C2 May 2017

Solutions and Mark Scheme

Note: Answer only with no working shown earns 0 marks
2.
(a) $\sin ^{2} \theta+6\left(1-\sin ^{2} \theta\right)+13 \sin \theta=0$,

$$
\text { (correct use of } \cos ^{2} \theta=1-\sin ^{2} \theta \text {) M1 }
$$

An attempt to collect terms, form and solve quadratic equation in $\sin \theta$, either by using the quadratic formula or by getting the expression into the form $(a \sin \theta+b)(c \sin \theta+d)$, with $a \times c=$ candidate's coefficient of $\sin ^{2} \theta$ and $b \times d=$ candidate's constant m1
$5 \sin ^{2} \theta-13 \sin \theta-6=0 \Rightarrow(5 \sin \theta+2)(\sin \theta-3)=0$
$\Rightarrow \sin \theta=-\frac{2}{5}, \quad(\sin \theta=3)$
$\theta=203 \cdot 58^{\circ}, 336 \cdot 42^{\circ}$
B1 B1
Note: Subtract (from final two marks) 1 mark for each additional root in range from $5 \sin \theta+2=0$, ignore roots outside range. $\sin \theta=-$, f.t. for 2 marks, $\sin \theta=+$, f.t. for 1 mark
(b) $A=110^{\circ}$

B1
$B-C=22^{\circ}$
B1
$110^{\circ}+B+C=180^{\circ} \quad$ (f.t. candidate's value for A) M1
$B=46^{\circ}, C=24^{\circ} \quad$ (f.t. one error)
3.
(a) $(2 x+1)^{2}=x^{2}+(x+5)^{2}-2 \times x \times(x+5) \times \cos 60^{\circ} \quad$ (o.e.)
(correct use of cos rule) M1
$3 x^{2}-x-24=0 \quad$ (convincing) A1
An attempt to solve the given quadratic equation in x, either by using the quadratic formula or by getting the expression into the form
$(a x+b)(c x+d)$, with $a \times c=3$ and $b \times d=-24$
$(3 x+8)(x-3)=0 \Rightarrow x=3$
(b) $\quad \frac{\sin A C B}{3}=\frac{\sin 60^{\circ}}{7}$
(substituting the correct values in the correct places in the sin rule) M1 $A C B=21 \cdot 8^{\circ}$
(Allow ft for $x>0$ obtained in (a) for M1A1)
4. (a) $S_{n}=a+[a+d]+\ldots+[a+(n-1) d]$
(at least 3 terms, one at each end) B1
$S_{n}=[a+(n-1) d]+[a+(n-2) d]+\ldots+a$
In order to make further progress, the two expressions for S_{n} must contain at least three pairs of terms, including the first pair, the last pair and one other pair of terms
Either:
$2 S_{n}=[a+a+(n-1) d]+[a+a+(n-1) d]+\ldots+[a+a+(n-1) d]$
Or:
$2 S_{n}=[a+a+(n-1) d] \quad n$ times M1
$2 S_{n}=n[2 a+(n-1) d]$
$S_{n}=\underline{n}[2 a+(n-1) d] \quad$ (convincing) A1
(b) $\quad \underline{8} \times(2 a+7 d)=156$

B1
2
$2 a+7 d=39$
$\underline{16} \times(2 a+15 d)=760$
B1
$2 a+15 d=95$
An attempt to solve the candidate's two derived linear equations simultaneously by eliminating one unknown
$d=7, a=-5$ (c.a.o.) A1
(c) $\quad d=9$

A correct method for finding $(p+8)$ th term
5. (a) $a=100, r=1 \cdot 2$

Value of donation in $12^{\text {th }}$ year $=100 \times 1 \cdot 2^{11}$ M1
Value of donation in $12^{\text {th }}$ year $=£ 743$ A1
(b) $\quad 100 \times \frac{\left(1-1 \cdot 2^{n}\right)}{1-1 \cdot 2}=15474$ M1
$1-1 \cdot 2^{n}=154 \cdot 74 \times(-0.2)$
m1
$1 \cdot 2^{n}=31 \cdot 948 \quad \mathrm{~A} 1$
$n=\underline{\log 31 \cdot 948}$ m1
$\log 1 \cdot 2$
$n=19$
cao A1
6. (a) $2 \times \frac{x^{-4}}{-4}-6 \times \frac{x^{7 / 4}}{7 / 4}+c$ B1, B1
(-1 if no constant term present)
(b) (i) $16-a^{2}=0 \Rightarrow-4$

B1
(ii) $\underline{\mathrm{d} y}=-2 x$ M1
$\mathrm{d} x$
Gradient of tangent $=8 \quad$ (f.t. candidate's value for a) A1 $b=32$
(convincing)
A1
(iii) Use of integration to find the area under the curve M1
$\int_{0}\left(16-x^{2}\right) \mathrm{d} x=16 x-(1 / 3) x^{3} \quad$ (correct integration) \quad A1
Correct method of substitution of candidate's limits m1

$$
\left[16 x-(1 / 3) x^{3}\right]_{-4}^{0}=0-[-64-(-64 / 3)]=128 / 3
$$

Area of the triangle $=64 \quad$ (f.t. candidate's value for a) B1 Use of candidate's value for a and 0 as limits and trying to find total area by subtracting area under curve from area of triangle
m1
Shaded area $=64-128 / 3=64 / 3$
(c.a.o.) A1
7. (a) Let $p=\log _{a} x, q=\log _{a} y$

Then $x=a^{p}, y=a^{q}$
$\underline{x}=\frac{a^{p}}{a^{q}}=a^{p-q}$
$\log _{a} x / y=p-q \quad$ (the relationship between \log and power)
$\log _{a} x / y=p-q=\log _{a} x-\log _{a} y \quad$ (convincing) B1
(b) $\frac{1}{3} \log _{b} x^{15}=\log _{b} x^{5}, 4 \log _{b} 3 / x=\underset{\text { (one corr }}{\log _{b} 3^{4} / x^{4}}$
$\frac{1}{3} \log _{b} x^{15}-\log _{b} 27 x+4 \log _{b} 3 / x=\log _{b} \frac{x^{5} \times 3^{4}}{27 x \times x^{4}} \quad$ (addition law) B1

$\frac{1}{3} \log _{b} x^{15}-\log _{b} 27 x+4 \log _{b} 3 / x=\log _{b} 3$	(subtraction law)	B1
(c.a.o.)	B1	

(c) $\quad \log _{d} 5=\frac{1}{3} \Rightarrow 5=d^{1 / 3}$
$d=125$
(rewriting log equation as power equation)
8.
(a) (i) $\quad A(-5,4)$

A correct method for finding radius

Radius $=\sqrt{ } 20 \quad$ A1
(ii) Either:

A correct method for finding $A P^{2}$ M1
$A P^{2}=25(>20) \Rightarrow P$ is outside C
(f.t. candidate's coordinates for A)

Or:

An attempt to substitute $x=-2, y=0$ in the equation of C (M1) $(-2)^{2}+0^{2}+10 \times(-2)-8 \times 0+21=5(>0)$
$\Rightarrow P$ is outside C
(b) An attempt to substitute $(2 x+4)$ for y in the equation of the circle
$5 x^{2}+10 x+5=0$
Either: Use of $b^{2}-4 a c$ m1
Discriminant $=0, \Rightarrow y=2 x+4$ is a tangent to the circle
$x=-1, y=2$
Or:
An attempt to factorise candidate's quadratic (m1)
Repeated (single) root, $\Rightarrow y=2 x+4$ is a tangent to the circle
$x=-1, y=2$
9. (a)
(i) $L=R \theta+r \theta$

B1
(ii) $K=\frac{1}{2} R^{2} \theta-\frac{1}{2} r^{2} \theta$

B1
(b) $\quad K=\frac{1}{2} \theta(R+r)(R-r)$
$L=\theta(R+r), R-r=x$
(both expressions)
m1
$K=\underline{1} L x$ 2

A1
$K=\frac{1}{2} \theta\left(R^{2}-r^{2}\right)$
$K=\frac{1}{2} \theta\left((r+x)^{2}-r^{2}\right)$
$K=\frac{1}{2} \theta\left(2 r x+x^{2}\right)$
$K=\frac{1}{2} x \theta(2 r+x)$
$K=\frac{1}{2} x \theta(R+r)$
$K=\frac{1}{2} L x$

Alternative solution

10. (a) $t_{3}=67$ B1
(b) $\quad t_{1}=7$ (f.t. candidate's value for t_{3}) B1
(b) 29999999 is of the form $3 k-1($ not $3 k+1)$ (o.e.)

OR
The number does not end in a 2 or a 7 E1

