GCE ASIA Level

0982/01

 Mechanics

 MATHEMATICS - M3}

 MATHEMATICS - M3}FRIDAY, 23 JUNE 2017 - MORNING
1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a WJEC pink 16-page answer booklet;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Take g as $9.8 \mathrm{~ms}^{-2}$.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. A particle moves along the x-axis such that its displacement x metres at time t seconds satisfies the differential equation

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}+x=2
$$

The particle passes through the origin when $t=0$.
(a) Find the time when the particle reaches the point $x=1$, and determine an expression for x at time t.
(b) Hence find an expression for the acceleration of the particle at time t.
2. Two particles P and Q, of mass 3 kg and 7 kg respectively, are attached one to each end of a light inextensible string. Initially, the string is slack and the particles are at rest on a smooth horizontal surface. The particle Q is then projected across the surface with speed $8 \mathrm{~ms}^{-1}$ away from P along the straight line passing through the initial positions of P and Q. Find the speed with which the particles begin to move immediately after the jerk and determine the impulsive tension in the string during the jerk.
3. The function x satisfies the differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}-6 \frac{\mathrm{~d} x}{\mathrm{~d} t}+(10-k) x=\frac{1}{50} k(k-5)(12 t-26)
$$

where k is a constant. When $t=0, x=8$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=16$. Find x in each of the following cases.
(a) $k=5$.
(b) $k=0$.
(c) $k=10$.
4. An object P, of mass 0.5 kg , moves along a horizontal straight line. The object experiences a resistive force of magnitude $3 v^{2} \mathrm{~N}$, where $v \mathrm{~ms}^{-1}$ is the speed of P at time t seconds. When $t=0, P$ is at a point O and moving with speed $2 \mathrm{~ms}^{-1}$.
(a) Show that v satisfies the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} v}{\mathrm{~d} t}=-6 v^{2} . \tag{2}
\end{equation*}
$$

(b) Find an expression for v in terms of t.
(c) Obtain an expression for v in terms of x, where x metres is the distance of P from O at time t seconds.
(d) Determine, in terms of x, the rate at which work is being done against the resistance when P is at a distance x metres from 0 .
5. The speed $v \mathrm{~ms}^{-1}$ of a particle moving along the x-axis is given by

$$
v^{2}=-4 x^{2}+8 x+21 .
$$

(a) Show that the motion is simple harmonic and write down the centre of the motion.
(b) Show that the period of the motion is π seconds and determine the amplitude.
(c) Given that when $t=0$, the particle is at the centre of the motion and moving with positive velocity, write down an expression for x in terms of t and calculate the time taken for the particle to reach $x=3$ for the first time.
6. A ladder $A B$, of length 8 m and weight $W \mathrm{~N}$, rests with one end A against a vertical wall and the other end B on horizontal ground. The ladder makes an angle α with the horizontal where $\tan \alpha=\frac{3}{4}$. The coefficient of friction between the ladder and the wall is λ and the coefficient of friction between the ladder and the ground is μ.
(a) Consider the case when the ladder is uniform. Given that $\lambda=0$ and the ladder is on the point of slipping, determine the value of μ in this case.
(b) Consider the case when the ladder is non-uniform and its centre of mass is $x \mathrm{~m}$ from A. Given that $\lambda=\mu=0.6$ and the ladder is on the point of slipping, calculate the value of x in this case.

END OF PAPER

