GCE ASIA Level

MATHEMATICS - M1
 Mechanics

TUESDAY, 20 JUNE 2017 - AFTERNOON
1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a WJEC pink 16-page answer booklet;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Take g as $9.8 \mathrm{~ms}^{-2}$.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. (a) When a lift is ascending with an acceleration of $a \mathrm{~ms}^{-2}$, the tension in the lift cable is 15000 N . The total mass of the lift and its contents is 1200 kg . Determine the value of a.
(b) A crate on the floor of another lift has mass 50 kg . The lift is descending with an acceleration of $0.2 \mathrm{~ms}^{-2}$. Find the magnitude of the reaction of the floor on the crate.
2. Two smooth spheres P and Q, of equal radii and of masses 6 kg and 2 kg respectively, are moving towards each other on a smooth horizontal table. Before collision, the speed of P is $5 \mathrm{~ms}^{-1}$ and the speed of Q is $3 \mathrm{~ms}^{-1}$. After collision, the direction of motion of Q is reversed and it moves with speed $7.5 \mathrm{~ms}^{-1}$.
(a) Find the magnitude of the impulse exerted by P on Q.
(b) Determine the speed of P after the collision.
(c) Calculate the coefficient of restitution between P and Q.
(d) After the first collision, sphere Q collides with a wall which is perpendicular to its direction of motion. The coefficient of restitution between sphere Q and the wall is $0 \cdot 6$. Determine the speed of Q after it has rebounded from the wall.
3.

The diagram shows a uniform plank $A B$, of mass 20 kg and length 2.4 m , supported in horizontal equilibrium by two pivots, one at C and one at D. The distance $A C$ and the distance $D B$ are both 0.5 m . A person of mass 40 kg stands at a point which is 0.6 m from B.
(a) Calculate the magnitudes of the reaction at C and the reaction at D.
(b) The person starts to walk towards A. Determine the greatest distance of the person from B if equilibrium is to be maintained.
4. A car of mass 800 kg is travelling on a horizontal road. It experiences a resistance to motion which is constant throughout the journey. The car accelerates from rest under a constant tractive force of 300 N exerted by its engine. After 50 seconds, the car reaches a speed of $15 \mathrm{~ms}^{-1}$.
(a) Determine the magnitude of the acceleration of the car.
(b) Calculate the magnitude of the constant resistance to motion.
(c) When the car reaches the speed of $15 \mathrm{~ms}^{-1}$, the engine is switched off and the car is brought to rest by a constant braking force. The total distance covered by the car for the whole journey is 500 m . Find the constant force exerted by the brakes.
5. Two particles P and Q, of masses 6 kg and 4 kg respectively, are connected by a light inextensible string of length 2 m . The string passes over a light smooth pulley fixed at the top of a smooth plane which is inclined at an angle α to the horizontal where $\sin \alpha=\frac{3}{5}$.

Initially, the particles are held at rest with the string just taut, with particle P lying on the plane and particle Q hanging just over the pulley. The particles are then released.
(a) Find the magnitude of the acceleration of the particles and the tension in the string.
(b) Given that particle Q is initially 1.5 m above the ground, determine the speed with which particle Q hits the ground.
(c) Given that particle P does not reach the top of the plane, calculate the time that elapses between Q reaching the ground and the string becoming taut again. Give your answer correct to 2 decimal places.
6. A light uniform rod $A B$, of length 3 m , has a particle of mass 2 kg attached to its midpoint and a particle of mass 0.8 kg attached to it at a distance 0.6 m from B. Another particle of mass 1.2 kg is attached to the rod at a distance of 0.5 m from A. Determine the distance of the centre of mass of the particles from B.
7. An object of mass 45 kg lies on a rough plane inclined at an angle α to the horizontal where $\tan \alpha=\frac{3}{4}$. A rope, attached to the object, is held parallel to the line of greatest slope of the plane. The coefficient of friction between the plane and the object is $0 \cdot 5$. The object remains stationary on the plane. Find the least and the greatest possible values of the tension in the rope.
8. The diagram below shows a uniform lamina $A B C D E F$. The rectangle $A B E F$ has sides $A F=18 \mathrm{~cm}$ and $E F=10 \mathrm{~cm}$. The triangle $B C D$ is isosceles with $B C=C D$ and $B D=12 \mathrm{~cm}$. The height of triangle $B C D$ is 15 cm .

(a) Find the distances of the centre of mass of the lamina from $A F$ and from $A B$.
(b) The lamina is suspended freely from the point E and hangs in equilibrium. Calculate the angle $E B$ makes with the vertical.

END OF PAPER

