GCE ASIA Level

0979/01

 MATHEMATICS - FP3

 MATHEMATICS - FP3

 Further Pure Mathematics

 Further Pure Mathematics}WEDNESDAY, 28 JUNE 2017 - MORNING
1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a WJEC pink 16-page answer booklet;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Solve the equation

$$
2 \sinh \theta+\cosh \theta=2
$$

Give your answer correct to three significant figures.
2. By putting $t=\tan \left(\frac{x}{2}\right)$, determine the value of the integral

$$
\int_{0}^{\frac{\pi}{2}} \frac{2}{1+\sin x+2 \cos x} \mathrm{~d} x
$$

Give your answer in the form $\ln N$, where N is a positive integer.
3. The curve C has equation $y=x^{3}$. The arc joining the points $(0,0)$ and $(1,1)$ on C is rotated through an angle 2π about the x-axis. Calculate the curved surface area of the solid generated, giving your answer correct to three significant figures.
4. The function f is defined by

$$
f(x)=\cos (\ln (1+x))
$$

(a) Show that

$$
\begin{equation*}
(1+x)^{2} f^{\prime \prime}(x)+(1+x) f^{\prime}(x)+f(x)=0 \tag{4}
\end{equation*}
$$

(b) Hence, or otherwise, show that the Maclaurin series for $f(x)$ is

$$
\begin{equation*}
1-\frac{1}{2} x^{2}+\frac{1}{2} x^{3}+\ldots \tag{5}
\end{equation*}
$$

(c) Deduce the Maclaurin series for $\sin (\ln (1+x))$ as far as the term in x^{2}.
5. (a) Show that the equation $\tan \theta \tanh \theta=1$ has a root, α, between 0.9 and 1.1 .
(b) Consider the sequence defined by

$$
\theta_{n+1}=\tan ^{-1}\left(\frac{1}{\tanh \theta_{n}}\right) \quad \text { with } \theta_{0}=1
$$

(i) Show that

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta}\left(\tan ^{-1}\left(\frac{1}{\tanh \theta}\right)\right)=-\left(\frac{1-\tanh ^{2} \theta}{1+\tanh ^{2} \theta}\right) .
$$

(ii) Hence show that the sequence defined above is convergent.
(c) Using this sequence, with $\theta_{0}=1$,
(i) write down the value of θ_{1},
(ii) write down the value of α correct to three decimal places.
6. The integral I_{n} is given, for $n \geqslant 0$, by

$$
I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x \mathrm{~d} x
$$

(a) Show that, for $n \geqslant 2$,

$$
\begin{equation*}
I_{n}=\frac{1}{n-1}-I_{n-2} \tag{5}
\end{equation*}
$$

(b) Hence determine the value of the integral

$$
\int_{0}^{\frac{\pi}{4}}\left(3+\tan ^{2} x\right)^{2} d x
$$

leaving your answer in terms of π.
7.

The diagram shows a sketch of the curve C_{1} with polar equation $r=\sqrt{3} \sin \theta$ and a sketch of the curve C_{2} with polar equation $r=\cos \theta$, both defined for $0 \leqslant \theta \leqslant \frac{\pi}{2}$.
(a) The point at which the tangent to C_{1} is perpendicular to the initial line is denoted by P and the point at which the tangent to C_{2} is parallel to the initial line is denoted by Q. Show that the origin O and the points P and Q lie on a straight line.
(b) (i) Show that the polar coordinates of the point of intersection of C_{1} and $C_{2} \operatorname{are}\left(\frac{\sqrt{3}}{2}, \frac{\pi}{6}\right)$.
(ii) Find the area of the shaded region enclosed by C_{1} and C_{2}.

