GCE ASIA Level

0978/01

MATHEMATICS - FP2
 Further Pure Mathematics

MONDAY, 26 JUNE 2017 - AFTERNOON
1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a WJEC pink 16-page answer booklet;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. The function f is defined on the domain $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ by

$$
f(x)=\sec x+x \tan x .
$$

Determine whether f is even, odd or neither even nor odd.
2. Evaluate the integral

$$
\int_{0}^{2} \frac{2 x^{2}+5}{x^{2}+4} \mathrm{~d} x
$$

giving your answer in the form $a+b \pi$, where a, b are constants to be determined.
3. Find the three cube roots of the complex number -8i. Give your answers in the form $x+\mathrm{i} y$ where x, y are either integers or surds.
4. (a) Given that $z=\cos \theta+\mathrm{i} \sin \theta$, show that

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta
$$

and find a similar expression for $z^{n}-\frac{1}{z^{n}}$.
(b) By expanding $\left(z+\frac{1}{z}\right)^{5}$, show that

$$
\cos ^{5} \theta=a \cos 5 \theta+b \cos 3 \theta+c \cos \theta
$$

where a, b, c are constants whose values should be determined.
(c) Hence evaluate the integral

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \cos ^{5} \theta \mathrm{~d} \theta \tag{4}
\end{equation*}
$$

5. Find the general solution to the equation

$$
\begin{equation*}
\cos \theta-\cos 5 \theta=\sin 3 \theta \tag{8}
\end{equation*}
$$

6. The function f is defined by

$$
f(x)=\frac{24 x^{2}+31 x+9}{(x+1)(2 x+1)(3 x+1)} .
$$

(a) Express $f(x)$ in partial fractions.
(b) (i) Evaluate the integral

$$
\int_{0}^{2} f(x) \mathrm{d} x
$$

giving your answer as $\ln N$, where N is a positive integer.
(ii) Explain briefly why the integral

$$
\int_{-2}^{0} f(x) \mathrm{d} x
$$

cannot be evaluated.
7. (a) The point $P(x, y)$ moves in such a way that its distance from the point $(a, 0)$ is equal to its distance from the line $x=-a$. Show that the locus of P is the parabola with equation $y^{2}=4 a x$.
(b) Determine the equation of the normal at the point $\left(a t^{2}, 2 a t\right)$ on the parabola.
(c) This normal intersects the parabola again at the point ($a s^{2}, 2 a s$). Obtain an expression for s in terms of t.
8. The function f is defined by

$$
f(x)=x+3+\frac{1}{x+1} .
$$

(a) Find the equation of
(i) the vertical asymptote on the graph of f,
(ii) the asymptote that is not parallel to a coordinate axis.
(b) Find the coordinates of the stationary points on the graph of f.
(c) (i) Obtain an expression for $f^{\prime \prime}(x)$.
(ii) Hence classify each of the stationary points as a maximum or a minimum.
(d) Sketch the graph of f, including the asymptotes.
(e) The set S is given by $S=[4,5]$. Determine $f^{-1}(S)$.

