GCE ASIA Level

0977/01
 MATHEMATICS - FP1
 Further Pure Mathematics

FRIDAY, 19 MAY 2017 - MORNING
1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a WJEC pink 16-page answer booklet;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. The matrix \mathbf{M} is given by

$$
\mathbf{M}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 4 & 2
\end{array}\right] .
$$

(a) Evaluate the determinant of \mathbf{M}.
(b) (i) Find the adjugate matrix of \mathbf{M}.
(ii) Deduce the inverse matrix \mathbf{M}^{-1}.
(c) Hence solve the system of equations

$$
\left[\begin{array}{lll}
1 & 2 & 3 \tag{2}\\
2 & 3 & 1 \\
3 & 4 & 2
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
11 \\
11 \\
17
\end{array}\right] .
$$

2. Consider the series

$$
S_{n}=1^{2}+4^{2}+7^{2}+\ldots+(3 n-2)^{2} .
$$

Obtain an expression for S_{n}, giving your answer in the form $a n^{3}+b n^{2}+c n$, where a, b, c are rational numbers.
3. The complex number z is given by $z=\frac{(1+2 \mathrm{i})(-3+\mathrm{i})}{(1+3 \mathrm{i})}$.

Determine the modulus and the argument of z.
4. The transformation T in the plane consists of a reflection in the x-axis, followed by a translation in which the point (x, y) is transformed to the point $(x-2, y+1)$, followed by an anticlockwise rotation through 90° about the origin.
(a) Show that the matrix representing T is

$$
\left[\begin{array}{rrr}
0 & 1 & -1 \tag{5}\\
1 & 0 & -2 \\
0 & 0 & 1
\end{array}\right] .
$$

(b) Show that T has no fixed points.
5. Consider the following equations.

$$
\begin{array}{r}
x+3 y-z=1 \\
2 x-y+2 z=3 \\
3 x-5 y+5 z=\lambda
\end{array}
$$

(a) Find the value of λ for which the equations are consistent.
(b) For this value of λ, find the general solution of the equations.
6. Use mathematical induction to prove that $9^{n}-1$ is divisible by 8 for all positive integers n.
7. The function f is defined on the domain $\left(0, \frac{\pi}{2}\right)$ by

$$
f(x)=(\tan x)^{\tan x}
$$

(a) Show that

$$
\begin{equation*}
f^{\prime}(x)=g(x)(1+\ln (\tan x)) \tag{4}
\end{equation*}
$$

where $g(x)$ is to be determined.
(b) Find the x-coordinate of the stationary point on the graph of f, giving your answer correct to two decimal places.
8. The complex numbers z and w are represented, respectively, by points $P(x, y)$ and $Q(u, v)$ in Argand diagrams and

$$
w z=1 .
$$

(a) Obtain expressions for x and y in terms of u and v.
(b) Given that the point P moves along the line $x+y=1$,
(i) show that the locus of Q is a circle,
(ii) determine the radius and the coordinates of the centre C of the circle.
(c) Given that P and Q have the same coordinates, find the two possible positions of P and Q.
9. The roots of the cubic equation $x^{3}+2 x^{2}+3 x+4=0$ are denoted by α, β, γ.
(a) (i) Show that

$$
\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+\frac{1}{\gamma^{2}}=-\frac{7}{16}
$$

(ii) What does this result tell you about the nature of the roots of this cubic equation?
(b) Determine the cubic equation whose roots are $\frac{\alpha}{\beta \gamma}, \frac{\beta}{\gamma \alpha}, \frac{\gamma}{\alpha \beta}$.

