GCE ASIA Level

0976/01
 MATHEMATICS - C4
 Pure Mathematics

FRIDAY, 16 JUNE 2017 - AFTERNOON
1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a WJEC pink 16-page answer booklet;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. (a) Express $\frac{8 x^{2}+7 x-25}{(x-1)^{2}(x+4)}$ in terms of partial fractions.
(b) Use your result to part (a) to express $\frac{9 x^{2}+5 x-24}{(x-1)^{2}(x+4)}$ in terms of partial fractions.
2. The curve C has equation

$$
y^{6}-3 x^{4}-9 x^{2} y+48=0
$$

(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 x y+4 x^{3}}{2 y^{5}-3 x^{2}}$.
(b) Find the gradient of the tangent to C at each of the points where C crosses the x-axis.
3. (a) Show that the equation

$$
5 \cos ^{2} \theta+7 \sin 2 \theta=3 \sin ^{2} \theta
$$

may be rewritten in the form

$$
a \tan ^{2} \theta+b \tan \theta+c=0
$$

where a, b, c are non-zero constants whose values are to be found.
Hence, find all values of θ in the range $0^{\circ} \leqslant \theta \leqslant 180^{\circ}$ satisfying the equation

$$
\begin{equation*}
5 \cos ^{2} \theta+7 \sin 2 \theta=3 \sin ^{2} \theta \tag{6}
\end{equation*}
$$

(b) (i) Express $\sqrt{5} \cos \phi+\sqrt{11} \sin \phi$ in the form $R \cos (\phi-\alpha)$, where R and α are constants with $R>0$ and $0^{\circ}<\alpha<90^{\circ}$.
(ii) Use your result to part (i) to find the least value of

$$
\frac{1}{\sqrt{5} \cos \phi+\sqrt{11} \sin \phi+6} .
$$

Write down a value for ϕ for which this least value occurs.
4. The region R is bounded by the curve $y=\cos x+\sec x$, the x-axis and the lines $x=\frac{\pi}{6}, x=\frac{\pi}{3}$. Find the volume of the solid generated when R is rotated through four right angles about the x-axis. Give your answer correct to two decimal places.
5. (a) Expand $(1+4 x)^{-\frac{1}{2}}$ in ascending powers of x up to and including the term in x^{2}. State the range of values of x for which your expansion is valid.
(b) Use your answer to part (a) to expand $\left(1+4 y+8 y^{2}\right)^{-\frac{1}{2}}$ in ascending powers of y up to and including the term in y^{2}.
6. The curve C has the parametric equations $x=a t^{2}, y=b t^{3}$, where a, b are positive constants. The point P lies on C and has parameter p.
(a) Show that the equation of the tangent to C at the point P is

$$
\begin{equation*}
2 a y=3 b p x-a b p^{3} . \tag{5}
\end{equation*}
$$

(b) The tangent to C at the point P intersects C again at the point with coordinates $(4 a, 8 b)$. Show that p satisfies the equation

$$
p^{3}-12 p+16=0 .
$$

Hence find the value of p.
7. (a) Find $\int \frac{\ln x}{x^{4}} \mathrm{~d} x$.
(b) Use the substitution $u=x^{2}+1$ to evaluate

$$
\begin{equation*}
\int_{0}^{1} x^{3}\left(x^{2}+1\right)^{4} \mathrm{~d} x . \tag{5}
\end{equation*}
$$

8. The size N of the population of a small island may be modelled as a continuous variable. At time t years, the rate of increase of N is assumed to be directly proportional to the value of \sqrt{N}.
(a) Write down a differential equation satisfied by N.
(b) When $t=5$, the size of the population was 256 . When $t=7$, the size of the population was 400 . Find an expression for N in terms of t.
9. In the diagram below, the points O, A, B, C and D are as follows.
A lies on $O C$ and $O C=5 O A$. B lies on $O D$ and $O D=2 O B$.

Taking O as origin, the position vectors of A and B are denoted by \mathbf{a} and \mathbf{b} respectively.
(a) Write down the vector AD in terms of \mathbf{a} and \mathbf{b}.

Hence show that the vector equation of the line $A D$ may be expressed in the form

$$
\mathbf{r}=(1-\lambda) \mathbf{a}+2 \lambda \mathbf{b} .
$$

(b) Find a similar expression for the vector equation of the line $B C$.
(c) The lines $A D$ and $B C$ intersect at the point E. Find the position vector of E in terms of \mathbf{a} and \mathbf{b}.
10. Complete the following proof by contradiction to show that $\sqrt{7}$ is irrational.

Assume that $\sqrt{7}$ is rational. Then $\sqrt{7}$ may be written in the form $\frac{a}{b}$, where a, b are integers having no factors in common.
$\therefore a^{2}=7 b^{2}$.
$\therefore a^{2}$ has a factor 7 .
$\therefore a$ has a factor 7 so that $a=7 k$, where k is an integer.

