

Candidate Number

## Mathematics

Assessment Unit A2 1<br>assessing<br>Pure Mathematics

## [AMT11]

*AMT11*

## Assessment

Assessment Level of Control:

## TIME

2 hours 30 minutes.
Tick the relevant box ( $\checkmark$ )

| Controlled Conditions |  |
| :--- | :--- |
| Other |  |

## INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
You must answer all twelve questions in the spaces provided.
Do not write outside the boxed area on each page or on blank pages or tracing paper.
Complete in black ink only. Do not write with a gel pen.
Questions which require drawing or sketching should be completed using an HB pencil.
Show clearly the full development of your answers. Answers without working may not gain full credit.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

## INFORMATION FOR CANDIDATES

The total mark for this paper is 150
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$ 12355

1 Fig. 1 below shows the rotor blades for the propeller of a boat.


Fig. 1

They are made up of four equal sectors of a circle of radius 30 cm .
(i) If the total area of the blades is $300 \pi \mathrm{~cm}^{2}$, find the exact value of $\theta$ in radians. [3]
$\qquad$
$\qquad$

2 (a) State whether the following sequences diverge, converge or oscillate:
(i) $\frac{n}{n^{2}+1}$
(ii) $\sin \left(\frac{n \pi}{6}\right)$
$\qquad$

[^0](b) (i) Use the Binomial Theorem to expand
$$
\sqrt{1-3 x}
$$
in ascending powers of $x$ up to and including the term in $x^{3}$

3 (a) Use the Trapezium Rule with 3 ordinates to find an approximate value for

$$
\int_{2}^{4} x \cos x \mathrm{~d} x
$$

(b) Part of a logo for a ski company can be modelled by the area between the curves $y=4 x-x^{2}$ and $y=x^{2}-6$ as shown in Fig. 2 below.


Fig. 2
Use calculus to find this area.
$\qquad$

4 (a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for each of the following:
(i) $y=\sec ^{5}(2 x)$
(ii) $y=\frac{\cot x}{\mathrm{e}^{4 x}}$
(b) A vase is modelled by rotating the curve

$$
y=\sqrt{x}+2
$$

between the lines $x=0$ and $x=4$ through $2 \pi$ radians about the $x$-axis, as shown in Fig. 3 below.


Fig. 3
Find the exact volume of the vase.
$\qquad$

5 （i）Write the following expression in partial fractions．

$$
\frac{3 x^{2}-10 x+5}{(x+1)(x-2)^{2}}
$$

6 (a) Sketch the graph of $y=\sin ^{-1}(x)$ on the axes below for $-1 \leqslant x \leqslant 1$

(b) Express

$$
\cos x-\sqrt{3} \sin x
$$

in the form $R \cos (x+\alpha)$ where $R$ is an integer and $0<\alpha<90^{\circ}$
$\qquad$
(c) Starting with the appropriate compound angle formula, prove that

$$
\begin{equation*}
\sin 3 \theta \equiv 3 \sin \theta-4 \sin ^{3} \theta \tag{5}
\end{equation*}
$$

7 (a) Solve the inequality $|2 x-1|>5$
(b) The graph of the function $y=\mathrm{f}(x)$ is sketched below in Fig. 4 The graph cuts the $x$-axis at $\mathrm{A}(2,0)$ and has an asymptote of $x=1$


Fig. 4
(i) On the axes below, sketch the graph of

$$
y=\mathrm{f}(2 x)+3
$$

and clearly label the image of A and the asymptote.

(ii) On the axes below, sketch the graph of

$$
y=-\mathrm{f}(x+2)
$$

and clearly label the image of A and the asymptote.

(c) The functions $f$ and $g$ are defined as:

$$
\begin{array}{ll}
\mathrm{f}(x)=\frac{10}{x-1} & x \in \mathbb{R}, x>1 \\
\mathrm{~g}(x)=\mathrm{e}^{3 x} & x \in \mathbb{R}, x>0
\end{array}
$$

(i) State the range of $\mathrm{f}(x)$ and the range of $\mathrm{g}(x)$.
$\qquad$
(ii) Find the inverse $\mathrm{f}^{-1}(x)$, stating its domain.
$\qquad$
(iii) Find the composite function $\operatorname{fg}(x)$, stating its domain.

8 Find the equation of the tangent to the curve

$$
x^{2}+5 y \ln x-x y^{2}=0
$$

at the point $(1,-1)$ ．
$\qquad$


# DO NOT WRITE ON THIS PAGE 

## (Questions continue overleaf)

10 (i) Find the four values of $x$ for which the curve

$$
y=\sqrt{2} \mathrm{e}^{-x} \cos x
$$

has stationary points in the range $0<x<4 \pi$

Write your values in ascending order.
$\qquad$
(ii) Show that the corresponding $y$ values of the stationary points found in (i) form the first four terms of a geometric progression.
$\qquad$
(iii) For the geometric progression defined in (ii), find an exact value for the sum to infinity.
$\qquad$

11 The path of a train on a model railway can be represented by the parametric equations

$$
x=2 t^{2}+4 t \text { and } y=\sin 2 t
$$

（i）Find the co－ordinates of the stationary point on this curve for $0<t<\frac{\pi}{2}$
$\qquad$

[^1]12 Water leaks out of a small hole in the bottom of a paddling pool.
The rate at which the water leaves the pool is proportional to the square root of the volume of water that remains in the pool.

The initial volume of water is $V_{0}$
If $\frac{5}{9}$ of the initial volume leaks out in the first hour, find how long it takes for the pool to empty.
$\qquad$

THIS IS THE END OF THE QUESTION PAPER

## DO NOT WRITE ON THIS PAGE



## DO NOT WRITE ON THIS PAGE

| For Examiner's <br> use only |  |
| :---: | :---: |
| Question <br> Number | Marks |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |
| 9 |  |
| 10 |  |
| 11 |  |
| 12 |  |

$\square$

## Permission to reproduce all copyright material has been applied for.

In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA
will be happy to rectify any omissions of acknowledgement in future if notified.



[^0]:    12355

[^1]:    12355

