Rewarding Learning

ADVANCED
General Certificate of Education

Mathematics

Assessment Unit A2 1
assessing
Pure Mathematics
[AMT11]

Assessment

MARK
 SCHEME

(Including Supplementary Mark Scheme to support Teachers)

GCE ADVANCED/ADVANCED SUBSIDIARY (AS) MATHEMATICS

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right-hand column and they are prefixed by the letters M, W and MW as appropriate. The key to the mark scheme is given below:

M indicates marks for correct method.
W indicates marks for working.
MW indicates marks for combined method and working.
The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of following through their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:
(a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
(b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examining team).

(ii) $\mathrm{P}=4\left(\frac{\pi}{6}\right)(30)+8(30)$

$$
\mathrm{P}=(20 \pi+240) \mathrm{cm}
$$

2 (a) (i) converges MW1
(ii) oscillates MW1
(b) (i) $(1-3 x)^{\frac{1}{2}} \quad$ MW1

$$
\begin{array}{ll}
=1+\left(\frac{1}{2}\right)(-3 x)+\frac{\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right)(-3 x)^{2}}{2!}+\frac{\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)(-3 x)^{3}}{3!}+\ldots \ldots & \text { M1 W2 } \\
=1-\frac{3}{2} x+\left(\frac{-1}{8}\right)\left(9 x^{2}\right)+\left(\frac{1}{16}\right)\left(-27 x^{3}\right)+\ldots \ldots & \\
=1-\frac{3}{2} x-\frac{9}{8} x^{2}-\frac{27}{16} x^{3}+\ldots \ldots & \text { MW1 }
\end{array}
$$

(ii) $|3 x|<1$

$$
-\frac{1}{3}<x<\frac{1}{3}
$$

$-\frac{1}{3}<x<\frac{1}{3}$

3

(a) | x | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: |
| y | $-0.8322 \ldots$ | $-2.9699 \ldots$ | $-2.6145 \ldots$ |
| $\int_{2}^{4} x \cos x \mathrm{~d} x \approx \frac{1}{2}(-0.8322 \ldots+2(-2.9699 \ldots)+-2.6145 \ldots)$ | | | |
| | $\approx \frac{1}{2}(-9.386823 \ldots)$ | | |
| | ≈-4.69 | $(3 \mathrm{sf})$ | |

(b) $x^{2}-6=4 x-x^{2}$
$2 x^{2}-4 x-6=0$
$2(x-3)(x+1)=0$
$x=3, x=-1$

$$
\begin{aligned}
& \int_{-1}^{3}\left(4 x-x^{2}\right)-\left(x^{2}-6\right) \mathrm{d} x \\
& \int_{-1}^{3}\left(4 x-2 x^{2}+6\right) \mathrm{d} x
\end{aligned}
$$

$$
=\left[2 x^{2}-\frac{2 x^{3}}{3}+6 x\right]_{-1}^{3}
$$

$$
=(18-18+18)-\left(2+\frac{2}{3}-6\right)
$$

$$
=\frac{64}{3}
$$

$$
=21.3 \quad(3 \mathrm{sf})
$$

4 (a) (i) $5 \sec ^{4}(2 x)(2) \sec (2 x) \tan (2 x)$
(ii) $\frac{\mathrm{e}^{4 x}\left(-\operatorname{cosec}^{2} x\right)-4 \mathrm{e}^{4 x}(\cot x)}{\left(\mathrm{e}^{4 x}\right)^{2}}$

$$
\begin{aligned}
& \frac{-\mathrm{e}^{4 x}\left(\operatorname{cosec}^{2} x+4 \cot x\right)}{\left(\mathrm{e}^{4 x}\right)^{2}} \\
& \frac{-\left(\operatorname{cosec}^{2} x+4 \cot x\right)}{\mathrm{e}^{4 x}}
\end{aligned}
$$

(b) $V=\pi \int_{0}^{4}(\sqrt{x}+2)^{2} \mathrm{~d} x$

$$
\begin{aligned}
& =\pi \int_{0}^{4}(x+4 \sqrt{x}+4) \mathrm{d} x \\
& =\pi \int_{0}^{4}\left(x+4 x^{\frac{1}{2}}+4\right) \mathrm{d} x \\
& =\pi\left[\frac{x^{2}}{2}+\frac{4 x^{\frac{3}{2}}}{\frac{3}{2}}+4 x\right]_{0}^{4}
\end{aligned}
$$

[

$$
=\pi\left[\left(\frac{16}{2}+\frac{8(8)}{3}+16\right)-(0)\right]
$$

$$
=\frac{136 \pi}{3}
$$

5 (i) $\frac{3 x^{2}-10 x+5}{(x+1)(x-2)^{2}} \equiv \frac{A}{(x+1)}+\frac{B}{(x-2)}+\frac{C}{(x-2)^{2}}$

$$
3 x^{2}-10 x+5 \equiv A(x-2)^{2}+B(x+1)(x-2)+C(x+1)
$$

$$
x=2: \quad 3 C=12-20+5 \quad \text { M1 }
$$

$$
x=-1: \quad 9 A=3+10+5
$$

$$
A=2
$$

$$
\begin{gathered}
x=0: \quad 4 A-2 B+C=5 \\
R=1
\end{gathered}
$$

$$
B=1
$$

$$
\frac{2}{(x+1)}+\frac{1}{(x-2)}-\frac{1}{(x-2)^{2}}
$$

(ii) $\int_{0}^{1} \frac{3 x^{2}-10 x+5}{(x+1)(x-2)^{2}} d x$

$$
\begin{array}{lr}
=\int_{0}^{1} \frac{2}{(x+1)}+\frac{1}{(x-2)}-\frac{1}{(x-2)^{2}} \mathrm{~d} x & \text { M1 } \\
=\left[2 \ln |x+1|+\ln |x-2|-\frac{(x-2)^{-1}}{-1}\right]_{0}^{1} & \text { M1 W2 } \\
=(2 \ln 2+\ln 1-1)-\left(2 \ln 1+\ln 2-\frac{1}{2}\right) & \text { M1 } \\
=\ln 2-\frac{1}{2} & \text { MW1 }
\end{array}
$$

(a)

(b) $R \cos (x+\alpha)=R \cos x \cos \alpha-R \sin x \sin \alpha \quad$ M1
$R \cos \alpha=1 \quad R \sin \alpha=\sqrt{3} \quad$ M1
$\frac{R \sin \alpha}{R \cos \alpha}=\sqrt{3}$
M1
$\tan \alpha=\sqrt{3}$
$\alpha=60^{\circ}$
$R^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)=4$
$R=2$
$\cos x-\sqrt{3} \sin x=2 \cos \left(x+60^{\circ}\right)$
(c) $\sin 3 \theta=\sin (2 \theta+\theta)$

$$
=\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta \quad \mathrm{M} 1
$$

$=2 \sin \theta \cos \theta \cos \theta+\left(1-2 \sin ^{2} \theta\right) \sin \theta \quad$ M1
$=2 \sin \theta \cos ^{2} \theta+\sin \theta-2 \sin ^{3} \theta \quad \mathrm{~W} 1$
$=2 \sin \theta\left(1-\sin ^{2} \theta\right)+\sin \theta-2 \sin ^{3} \theta$
$=2 \sin \theta-2 \sin ^{3} \theta+\sin \theta-2 \sin ^{3} \theta$
$=3 \sin \theta-4 \sin ^{3} \theta$
Alternate solution

$$
\begin{aligned}
\sin 3 \theta & =\sin (2 \theta+\theta) & \mathrm{M} 1 \\
& =\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta & \mathrm{M} 1 \\
& =2 \sin \theta \cos \theta \cos \theta+\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \sin \theta & \mathrm{M} 1 \\
& =2 \sin \theta \cos ^{2} \theta+\sin \theta \cos ^{2} \theta-\sin ^{3} \theta & \mathrm{~W} 1 \\
& =2 \sin \theta\left(1-\sin ^{2} \theta\right)+\sin \theta\left(1-\sin ^{2} \theta\right)-\sin ^{3} \theta & \\
& =2 \sin \theta-2 \sin ^{3} \theta+\sin \theta-\sin ^{3} \theta-\sin ^{3} \theta & \mathrm{~W} 1
\end{aligned}
$$

(a) $2 x-1>5 \quad 2 x-1<-5$
$x>3$
or
$x<-2$

Alternate solution

$$
\begin{aligned}
& (2 x-1)^{2}>25 \\
& 4 x^{2}-4 x+1>25 \\
& 4 x^{2}-4 x-24>0 \\
& 4\left(x^{2}-x-6\right)>0 \\
& 4(x-3)(x+2)>0 \\
& x>3, x<-2
\end{aligned}
$$

(b) (i)

(ii)

MW3
(c) (i) $\mathrm{f}(x)>0$
$\mathrm{g}(x)>1$ MW1
(ii) $y=\frac{10}{x-1}$
$y(x-1)=10$
$y x-y=10$
$x=\frac{10+y}{y}$
$\mathrm{f}^{-1}(x)=\frac{10+x}{x}$
Domain $x \in \mathbb{R}, x>0$
(iii) $\operatorname{fg}(x)$
$\begin{array}{ll}f\left(\mathrm{e}^{3 x}\right) & \text { M1 } \\ =\frac{10}{\mathrm{e}^{3 x}-1} & \text { W1 }\end{array}$
Domain $x \in \mathbb{R}, x>0$
MW1
$8 \quad 2 x+5 y\left(\frac{1}{x}\right)+5 \frac{\mathrm{~d} y}{\mathrm{dx}} \ln x-(1) y^{2}-x(2 y) \frac{\mathrm{d} y}{\mathrm{~d} x}=0$ M2W5

$$
\operatorname{At}(1,-1)
$$

$$
2-5-1+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \quad \text { M1 }
$$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=2
$$ W1

$$
y+1=2(x-1)
$$

$$
y=2 x-3
$$

9
(a) $\int 1 \times \ln x d x$

$$
=x \ln x-\int x\left(\frac{1}{x}\right) \mathrm{d} x
$$

M1 W2
$=x \ln x-x+c$
(b) $x=\frac{2}{3} \sin \theta$
$\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\frac{2}{3} \cos \theta$
$x=0, \theta=0$
$x=\frac{1}{3}, \theta=\frac{\pi}{6}$
$\int_{0}^{\frac{\pi}{6}} \sqrt{4-9\left(\frac{2}{3} \sin \theta\right)^{2}}\left(\frac{2}{3} \cos \theta\right) \mathrm{d} \theta$
$\int_{0}^{\frac{\pi}{6}} \sqrt{4-4 \sin ^{2} \theta}\left(\frac{2}{3} \cos \theta\right) \mathrm{d} \theta$
$\int_{0}^{\frac{\pi}{6}} \sqrt{4 \cos ^{2} \theta}\left(\frac{2}{3} \cos \theta\right) \mathrm{d} \theta$
$\int_{0}^{\frac{\pi}{6}} \frac{4}{3} \cos ^{2} \theta \mathrm{~d} \theta$
$\int_{0}^{\frac{\pi}{6}} \frac{4}{3}\left(\frac{1}{2}(\cos 2 \theta+1)\right) \mathrm{d} \theta$
$\frac{2}{3} \int_{0}^{\frac{\pi}{6}}(\cos 2 \theta+1) \mathrm{d} \theta$
$=\frac{2}{3}\left[\frac{\sin 2 \theta}{2}+\theta\right]_{0}^{\frac{\pi}{6}}$
$=\frac{2}{3}\left(\left(\frac{\sqrt{3}}{4}+\frac{\pi}{6}\right)-(0+0)\right)$
$=\frac{\sqrt{3}}{6}+\frac{\pi}{9}$
$=0.638 \quad(3 \mathrm{sf})$
MW1

10 (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\sqrt{2} \mathrm{e}^{-x} \sin x-\sqrt{2} \mathrm{e}^{-x} \cos x$
Stationary points

$$
\begin{array}{lr}
-\sqrt{2} \mathrm{e}^{-x} \sin x-\sqrt{2} \mathrm{e}^{-x} \cos x=0 & \mathrm{M} 1 \\
\mathrm{e}^{-x} \neq 0 & \mathrm{MW} 1 \\
\sin x+\cos x=0 & \text { M1 } \\
\tan x=-1 & \text { (provided } \cos x \neq 0) \\
x=\frac{3 \pi}{4}, \frac{7 \pi}{4}, \frac{11 \pi}{4}, \frac{15 \pi}{4} & \text { MW1 } \\
\text { W1 }
\end{array}
$$

(ii) $y=-\mathrm{e}^{-\frac{3 \pi}{4}}, \mathrm{e}^{-\frac{7 \pi}{4}},-\mathrm{e}^{-\frac{11 \pi}{4}}, \mathrm{e}^{-\frac{15 \pi}{4}}$

$$
\begin{aligned}
& r=\frac{\mathrm{e}^{-\frac{7 \pi}{4}}}{-\mathrm{e}^{-\frac{3 \pi}{4}}}=-\mathrm{e}^{-\pi} \\
& r=\frac{\mathrm{e}^{-\frac{15 \pi}{4}}}{-\mathrm{e}^{-\frac{11 \pi}{4}}}=-\mathrm{e}^{-\pi}
\end{aligned}
$$

(iii) $S_{\infty}=\frac{-\mathrm{e}^{-\frac{3 \pi}{4}}}{1+\mathrm{e}^{-\pi}}$

$$
=\frac{-\mathrm{e}^{\frac{\pi}{4}}}{\mathrm{e}^{\pi}+1}
$$

AVAILABLE MARKS

11 (i) $\frac{\mathrm{d} x}{\mathrm{~d} t}=4 t+4$
$\frac{\mathrm{d} y}{\mathrm{~d} t}=2 \cos 2 t$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 \cos 2 t}{4 t+4}$

At stationary point:
$\frac{2 \cos 2 t}{4 t+4}=0$
Since $0<t<\frac{\pi}{2} \Rightarrow t \neq-1$
$2 \cos 2 t=0$
$t=\frac{\pi}{4}$
$x=\frac{\pi^{2}}{8}+\pi, y=1$
$x=4.38, y=1$
(ii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{2 \cos 2 t}{4 t+4}\right)$
$=\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{2 \cos 2 t}{4 t+4}\right) \times \frac{\mathrm{d} t}{\mathrm{~d} x}$ M1
$=\left(\frac{(-4 \sin 2 t)(4 t+4)-4(2 \cos 2 t)}{(4 t+4)^{2}}\right) \times \frac{1}{4 t+4}$
$t=\frac{\pi}{4}$:
$\frac{d^{2} y}{d x^{2}}=\left(\frac{-4(\pi+4)}{(\pi+4)^{2}}\right) \times \frac{1}{\pi+4}$
$=\frac{-4}{(\pi+4)^{2}}<0$
$\left(\frac{\pi^{2}}{8}+\pi, 1\right)$ Maximum stationary point.
$12 \frac{\mathrm{~d} V}{\mathrm{~d} t} \propto-\sqrt{V}$
$\frac{\mathrm{d} V}{\mathrm{~d} t}=-k \sqrt{V}$
$\int \frac{1}{\sqrt{V}} \mathrm{~d} V=\int-k \mathrm{~d} t$
M1 W1
$2 V^{\frac{1}{2}}=-k t+c$ M1 W1
$t=0, V=V_{0}: \quad 2 \sqrt{V_{0}}=c$ MW1
$2 \sqrt{V}=-k t+2 \sqrt{V_{0}}$
$t=1, \quad V=\frac{4}{9} V_{0}:$
$2 \sqrt{\frac{4 V_{0}}{9}}=-k+2 \sqrt{V_{0}}$
$k=\frac{2 \sqrt{V_{0}}}{3}$
$\sqrt{V}=\sqrt{V_{0}}-\frac{\sqrt{V_{0}}}{3} t$
When empty, $V=0$:
$\sqrt{V_{0}}-\frac{\sqrt{V_{0}}}{3} t=0$
$t=3$ hours

1 (i) Tries equation for area - must have evidence of using $\frac{1}{2} r^{2} \theta$ in equation $\begin{array}{ll}\text { M1 } \\ \text { Correct equation for } \theta & \text { W1 }\end{array}$
Correct θ (must be in radians) W1
(ii) Tries equation for arc length i.e. evidence of using $r \theta$ (allow ft for their θ in radians) M1 Uses $8 r \quad$ MW1 Correct answer W1

2 (a) (i) Converges
MW1
(ii) Oscillates MW1
(b) (i) Writes as $(1-3 x)^{\frac{1}{2}}$ MW1

Correct structure of binomial M1
Coefficients all correct - not necessary to be simplified at this stage W1
Powers of $(-3 x)$ all correct W1
All terms correct MW1
(ii) Correct range MW1

3 (a) Correct x values MW1
Correct y values MW1
Tries to use trapezium rule M1
h correct MW1
Correct answer W1

Note

[A] Incorrect value for h - can only award M1 provided the set-up of the trapezium rule is correct for their x, y, h values i.e. $\max 1 / 5$
(b) Tries to find x values by equating $x^{2}-6$ and $4 x-x^{2} \quad$ M1

Correct x values W1
Tries to integrate M1
Subtracts equations W1
Integration correct W1
Tries to use limits M1
Correct area W1

AVAILABLE MARKS

-

Notes

[A] Limits substituted in opposite order and leaves answer as -21.3 Lose final W1 mark only i.e. max 6/7
[B] Subtracts equations in wrong order and leaves answer as -21.3
M1 W1 M1 W1 W1(ft) M1 W0 i.e. 6/7 max
[C] Incorrect limits found - M1 W0 M1 W1 W1 M1 W0 i.e. 5/7 max

Correct answer in exact form W1
Notes[A] If use $V=\pi \int x^{2} \mathrm{~d} y$, can award M1 and nothing further
5 (i) Tries to write as partial fractions M1
Correct W1
Equates numerators M1
Substitutes x values M1
2 values correct (cao) W1
3 rd value correct (cao) W1
Notes
[A] If omit $\frac{B}{x-2}$ can potentially award M1 W0 M1 M1 W0 W0 i.e. 3/6 max
(ii) Sets up integration as partial fractions M1
Tries to integrate M1
Both \ln terms correct W1
$(x-2)^{-1}$ W1
Tries to substitute limits M1
Correct answer as shown MW1

Notes

[A] Incorrect answer from (i)
Award M1 M1 W1(if there are two correctly integrated ln terms)
W1 (provided similar form of reciprocal term) M1 MW0 i.e. max of 5/6
[B] If correct answer just appears and no working, then assume calculator was used - can award M1 for trying to use calculator and MW1 for correct answer i.e. 2/6 max
[C] If incorrect answer just appears without working then 0/6
(a) Correct shape MW1$\pm \frac{\pi}{2}$ labels
(b) Tries to use $\cos (x+\alpha) \equiv \cos x \cos \alpha-\sin x \sin \alpha$ M1
Tries to equate coefficients M1
Tries to find α M1
Correct value of α W1
Tries to find R M1
Correct value of R W1
Written in correct form MW1
Notes
[A] If 1 st 2 lines not explicitly stated but remainder of working correct, can award all marks
[B] If 1st 2 lines not explicitly stated and $\tan \alpha$ incorrect - M0 M0 M0 W0
Then award M1 W1 if R found correctly using Pythagoras M0 W0 if R found incorrectly using incorrect trig MW0 since final answer incorrect
i.e. \max of $2 / 7$
(c) Writes as $(2 \theta+\theta)$ M1
Tries to use $\sin (\mathrm{A}+\mathrm{B}) \quad$ M1
Uses double angle formulae for sine and cosine M1
Changes all terms to powers of $\sin \theta$ W1
Correct final answer

AVAILABLE

7 (a) Splits modulus into 2 inequalities or squares both sides
[1] for each correct x value
Correct inequalities (cao)
(b) (i) Correct x value

Correct y value

 MW1Correct asymptote MW1
(ii) Crosses at origin MW1

Correct asymptote MW1
Correct shape i.e. evidence of reflection in x-axis MW1
(c) (i) Correct range for f MW1
Correct range for g MW1

Notes

[A] Must be written as $\mathrm{f}(x)>0$ and $\mathrm{g}(x)>1$ i.e. $x>0$ or $y>0$ is awarded MW0
(ii) Writes as $y=\ldots$ and then tries to change subject

Correct $x=$
Correct answer and notation
Correct domain MW1

Notes

[A] Accept either $\mathrm{f}^{-1}(x)=\cdots$ or $\mathrm{f}^{-1}: x \rightarrow \cdots$ formats
[B] Award final MW1 even if $x \in \mathbb{R}$ is omitted in domain
(iii) Tries to find composite M1

Correct $\mathrm{fg}(x)$
W1
Correct domain
MW1

Notes

[A] Accept either $\mathrm{fg}(x)=\cdots$ or $\mathrm{fg}: x \rightarrow \cdots$ formats
[B] Award final MW1 even if $x \in \mathbb{R}$ is omitted in domain

AVAILABLE

8 Evidence of trying to use product rule M1
Evidence of trying to use implicit differentiation
One mark for each correct term W5
Tries to substitute $(1,-1)$ into their derivative
Correct gradient W1
Tries to use equation of line using their gradient M1
Correct answer only W1
9 (a) Rewrites as $1 \times \ln x$ M1
Evidence of trying to use integration by parts M1
Obtains $x \ln x$ W1
Obtains $\int x\left(\frac{1}{x}\right) \mathrm{d} x-$ do not penalise if $\mathrm{d} x$ omitted W1
Correct answer - do not penalise if c omitted MW1
Notes [A] If set $u=1, \frac{\mathrm{~d} v}{\mathrm{~d} x}=\ln x$ then can award M1 only for recognising theneed to use parts
(b) Tries to differentiate x with respect to θ M1
Correct derivative W1
Tries to change limits M1
Correct limits W1
Tries to substitute M1
Obtains $\sqrt{4-4 \sin ^{2} \theta}$ W1
Obtains $\frac{2}{3} \cos \theta \mathrm{~d} \theta$ W1
Simplifies to $\int \frac{4}{3} \cos ^{2} \theta \mathrm{~d} \theta$ W1
Tries to use $\cos 2 \theta$ M1
Correctly substituted W1
Correct integration (cao) MW1
Correct answer (cao) MW1

Notes
[A] Error in $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$: M1 W0
May gain: M1 W1 - for limits M1 - tries to substitute W1 $-\sqrt{4-4 \sin ^{2} \theta}$ obtained $\quad \mathrm{M} 1(\mathrm{ft})$ - if they try to use $\cos 2 \theta$ W1(ft) - if correctly substituted Max of 7/12
[B] If limits are not initially changed but answer converted back to x and calculated correctly at the end then all marks can be awarded
[C] If limits are not initially changed and answer not converted back to x at the end then M0 W0 - for limits and MW0 for final answer i.e. max 9/12
10 (i) Evidence of trying to use product rule M1
[1] for each of 2 correct terms W2
Sets their derivative $=0$ M1
Knows $e^{-x} \neq 0$ MW1
Sets $\sin x+\cos x=0$ M1
Obtains $\tan x=-1$ MW1
Finds four x values - must be in radian format W1
Notes
[A] Error in use of product rule M1
W0 or W1
M1 possible MW1 possible
M1 - ft dependent on award of both of previous M1 marks MW0 and W0
Max of 5/8
(ii) Tries to find y values (can ft their values from (i)) M1
Four correct values W1
Tries to find r (can ft their values from (i)) M1
Correct answer (must try a 2 nd ratio) W1
(iii) Tries formula for sum to infinity (can ft their a, r) M1
Correct answer (either form) W1
11 (i) Evidence of trying to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ using parametric differentiation M1
One mark for each of correct numerator and denominator MW2
Sets their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ (conditional on award of 1st M1) M1
Correct value of t W1
Correct coordinates MW1
Notes [A] Correct $\frac{\mathrm{d} x}{\mathrm{~d} t}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}$ but no further use of parametric differentiationgives max 2/6
(ii) Tries to find 2nd derivative M1
Tries to use parametric differentiation M1
Tries to use correct quotient rule M1
One mark for each term differentiated correctly W2
Tests that 2nd derivative is negative \rightarrow maximum MW1
available

12 Sets up differential equation (allow $\frac{\mathrm{d} V}{\mathrm{~d} t}=k \sqrt{V}$)
Tries to separate variables M1
Correctly W1
Tries to integrate M1
Both sides are correct W1
Finds c correctly MW1
Uses $\frac{4}{9} \quad$ M1
Finds $k \quad$ W1
Uses $V=0 \quad$ M1
Finds correct time W1

Notes

[A] Incorrect initial differential equation e.g. $\frac{\mathrm{d} V}{\mathrm{~d} t}=k V$ or $\frac{\mathrm{d} V}{\mathrm{~d} t}=k V^{2}$ Award M0

M1 W1 as ft
M1 W0
MW0
M1 W0
M1 W0
Max of $5 / 10$

