

ADVANCED General Certificate of Education

Mathematics

Assessment Unit A2 1 assessing Pure Mathematics

[AMT11]

Assessment

MARK SCHEME

(Including Supplementary Mark Scheme to support Teachers)

GCE ADVANCED/ADVANCED SUBSIDIARY (AS) MATHEMATICS

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right-hand column and they are prefixed by the letters **M**, **W** and **MW** as appropriate. The key to the mark scheme is given below:

- M indicates marks for correct method.
- W indicates marks for working.
- MW indicates marks for combined method and working.

The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of **following through** their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:

- (a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
- (b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examining team).

1	(i)	$300\pi = 4 \times (\frac{1}{2}(30)^{2}(\theta)) 300\pi = 1800\theta$	M1 W1	AVAILABLE MARKS
		$\theta = \frac{\pi}{6}$	W1	
	(ii)	$P = 4\left(\frac{\pi}{6}\right)(30) + 8(30)$	M1 MW1	
		$P = (20\pi + 240) \text{ cm}$	W1	6
2	(a)	(i) converges	MW1	
		(ii) oscillates	MW1	
	(b)	(i) $(1-3x)^{\frac{1}{2}}$	MW1	
		$= 1 + \left(\frac{1}{2}\right)(-3x) + \frac{\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right)(-3x)^2}{2!} + \frac{\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)(-3x)^3}{3!} + \dots \dots$	M1W2	
		$= 1 - \frac{3}{2}x + \left(\frac{-1}{8}\right)(9x^2) + \left(\frac{1}{16}\right)(-27x^3) + \dots \dots$		
		$= 1 - \frac{3}{2}x - \frac{9}{8}x^2 - \frac{27}{16}x^3 + \dots$	MW1	
		(ii) $ 3x < 1$		
		$-\frac{1}{3} < x < \frac{1}{3}$	MW1	8

3	(a)	x	2	3	4	MW1	AVAILABLE
		у	-0.8322	-2.9699	-2.6145	MW1	WIAKKS
		$\int_{2}^{4} x$ $\approx \frac{1}{2}$	$x \cos x dx \approx \frac{1}{2} (-4)$ $\frac{1}{2} (-9.386823)$	0.8322 + 2(-2)	2.9699) + -2.61	45) M1 MW1	
		≈	4.69 (3 sf)			W1	
	(b)	$\frac{x^2}{2x^2}$	$6 = 4x - x^2$			M1	
		2x = 2(x)	$\begin{aligned} -4x &= 0 = 0 \\ -3)(x+1) &= 0 \\ 3, x &= -1 \end{aligned}$			W1	
		\int_{-1}^{3}	$(4x - x^2) - (x^2)$	(-6) dx		M1 W1	
		\int_{-1}^{3}	$(4x - 2x^2 + 6)$	dx			
		=	$2x^2 - \frac{2x^3}{3} + 6x\Big]^2$	-1		W1	
		=(1	8-18+18)-	$\left(2+\frac{2}{3}-6\right)$		M1	
		$=\frac{6}{3}$	$\frac{4}{3}$				
		= 2	1.3 (3 sf)			WI	12
4	(a)	(i)	$5 \sec^4(2x)(2) = 10 \sec^5(2x) \tan^{10}(2x)$	$\sec(2x)\tan(2x)$ $\ln(2x)$		M1 W2 W1	
		(ii)	$\frac{e^{4x}(-\csc^2 x)}{(e^4)}$	$\frac{(1-4)^{4x}(\cot x)}{(4x)^2}$		M1 W2	
			$\frac{-\mathrm{e}^{4x}(\mathrm{cosec}^2 x)}{(\mathrm{e}^{4x})^2}$	$\frac{+4\cot x}{2}$			
			$\frac{-(\csc^2 x + 4}{e^{4x}}$	$\cot x$		MW1	
	(b)	V =	$=\pi\int_0^4 \left(\sqrt{x}+2\right)^2$	dx		M1	
		=	$= \pi \int_0^4 (x + 4\sqrt{x})$	+ 4) dx		W1	
		=	$= \pi \int_0^4 (x + 4x^{\frac{1}{2}})$	(+ 4) dx			
		=	$=\pi\left[\frac{x^2}{2} + \frac{4x^{\frac{3}{2}}}{\frac{3}{2}} + 4\right]$	$x \bigg]_0^4$		M1 W2	
		=	$=\pi\left[\left(\frac{16}{2}+\frac{8(8)}{3}+\right)\right]$	(-16) - (0)		M1	
		=	$\frac{136\pi}{3}$			W1	15

5	(i)	$\frac{3x^2 - 10x + 5}{(x+1)(x-2)^2} \equiv \frac{A}{(x+1)} + \frac{B}{(x-2)} + \frac{C}{(x-2)^2}$	M1W1	AVAILABLE MARKS
		$3x^{2} - 10x + 5 \equiv A(x-2)^{2} + B(x+1)(x-2) + C(x+1)$	M1	
		$x = 2: 3C = 12 - 20 + 5 \\ C = -1$	M1	
		$x = -1: 9A = 3 + 10 + 5 \\ A = 2$		
		x = 0: $4A - 2B + C = 5B = 1$		
		$\frac{2}{(x+1)} + \frac{1}{(x-2)} - \frac{1}{(x-2)^2}$	W2	
	(ii)	$\int_0^1 \frac{3x^2 - 10x + 5}{(x+1)(x-2)^2} \mathrm{d}x$		
		$= \int_0^1 \frac{2}{(x+1)} + \frac{1}{(x-2)} - \frac{1}{(x-2)^2} \mathrm{d}x$	M1	
		$= \left[2\ln x+1 + \ln x-2 - \frac{(x-2)^{-1}}{-1} \right]_{0}^{1}$	M1W2	
		$= (2\ln 2 + \ln 1 - 1) - (2\ln 1 + \ln 2 - \frac{1}{2})$	M1	
		$=\ln 2 - \frac{1}{2}$	MW1	12

MW2

M1

MW1

M1 M1

M1

W1

W1

14

AVAILABLE MARKS

(b) $R\cos(x+\alpha) = R\cos x \cos \alpha - R\sin x \sin \alpha$

 $R\cos\alpha = 1$ $R\sin\alpha = \sqrt{3}$ M1

$$\frac{R\sin\alpha}{R\cos\alpha} = \sqrt{3}$$
 M1

$$\tan \alpha = \sqrt{3}$$

$$\alpha = 60^{\circ}$$
 W1

$$R^{2}(\sin^{2}\alpha + \cos^{2}\alpha) = 4$$

$$R = 2$$
M1
W1

 $\cos x - \sqrt{3}\sin x = 2\cos\left(x + 60^\circ\right)$

(c)
$$\sin 3\theta = \sin(2\theta + \theta)$$

= $\sin 2\theta \cos\theta + \cos 2\theta \sin\theta$

 $= 2\sin\theta\cos\theta\cos\theta + (1 - 2\sin^2\theta)\sin\theta$

$$= 2\sin\theta\cos^2\theta + \sin\theta - 2\sin^3\theta$$

= $2\sin\theta (1 - \sin^2\theta) + \sin\theta - 2\sin^3\theta$
= $2\sin\theta - 2\sin^3\theta + \sin\theta - 2\sin^3\theta$
= $3\sin\theta - 4\sin^3\theta$

Alternate solution

$\sin 3\theta = \sin(2\theta + \theta)$	M1
$=\sin 2\theta \cos \theta + \cos 2\theta \sin \theta$	M1
$= 2\sin\theta\cos\theta\cos\theta + (\cos^2\theta - \sin^2\theta)\sin\theta$	M1
$= 2\sin\theta\cos^2\theta + \sin\theta\cos^2\theta - \sin^3\theta$	W1
$= 2\sin\theta \left(1 - \sin^2\theta\right) + \sin\theta \left(1 - \sin^2\theta\right) - \sin^3\theta$	
$= 2\sin\theta - 2\sin^3\theta + \sin\theta - \sin^3\theta - \sin^3\theta$	
$= 3\sin\theta - 4\sin^3\theta$	W1

12355.01

6

	(c) (i) $f(x) > 0$ g(x) > 1	MW1 MW1	AVAILABLE MARKS
	(ii) $y = \frac{10}{x-1}$	M1	
	y(x-1) = 10		
	yx - y = 10		
	$x = \frac{10 + y}{v}$	W1	
	$f^{-1}(x) = \frac{10+x}{r}$	MW1	
	Domain $x \in \mathbb{R}, x > 0$	MW1	
	(iii) $fg(x)$	M1	
	$=\frac{10}{e^{3x}-1}$	W1	
	Domain $x \in \mathbb{R}, x > 0$	MW1	19
8	$2x + 5y\left(\frac{1}{x}\right) + 5\frac{dy}{dx}\ln x - (1)y^2 - x(2y)\frac{dy}{dx} = 0$	M2W5	
	At $(1, -1)$		
	$2-5-1+2\frac{\mathrm{d}y}{\mathrm{d}x}=0$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2$	W1	
	y + 1 = 2(x - 1) y = 2x - 3	M1 W1	11
		VV 1	11

9	(a)	$\int 1 \times \ln x \mathrm{d}x$	M1	AVAILABLE MARKS
		$=x\ln x - \int x\left(\frac{1}{x}\right) dx$	M1 W2	
		$=x\ln x - x + c$	MW1	
	(b)	$x = \frac{2}{3}\sin\theta$		
		$\frac{\mathrm{d}x}{\mathrm{d}\theta} = \frac{2}{3}\cos\theta$	M1 W1	
		$x = 0, \theta = 0$		
		$x = \frac{1}{3}, \ \theta = \frac{\pi}{6}$	M1 W1	
		$\int_{0}^{\frac{\pi}{6}} \sqrt{4 - 9\left(\frac{2}{3}\sin\theta\right)^{2}} \left(\frac{2}{3}\cos\theta\right) d\theta$	M1 W2	
		$\int_{0}^{\frac{\pi}{6}} \sqrt{4-4\sin^2\theta} \Big(\frac{2}{3}\cos\theta\Big) \mathrm{d}\theta$		
		$\int_{0}^{\frac{\pi}{6}} \sqrt{4\cos^2\theta} \left(\frac{2}{3}\cos\theta\right) \mathrm{d}\theta$		
		$\int_{0}^{\frac{\pi}{6}} \frac{4}{3} \cos^2 \theta \mathrm{d}\theta$	W1	
		$\int_0^{\frac{\pi}{6}} \frac{4}{3} \left(\frac{1}{2} (\cos 2\theta + 1) \right) d\theta$	M1 W1	
		$\frac{2}{3}\int_0^{\frac{\pi}{6}}(\cos 2\theta + 1)\mathrm{d}\theta$		
		$=\frac{2}{3}\left[\frac{\sin 2\theta}{2}+\theta\right]_{0}^{\frac{\pi}{6}}$	MW1	
		$= \frac{2}{3} \left(\left(\frac{\sqrt{3}}{4} + \frac{\pi}{6} \right) - (0+0) \right)$		
		$=\frac{\sqrt{3}}{6}+\frac{\pi}{9}$		
		= 0.638 (3 sf)	MW1	17

10	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\sqrt{2}\mathrm{e}^{-x}\sin x - \sqrt{2}\mathrm{e}^{-x}\cos x$	M1 W2	AVAILABLE MARKS
		Stationary points		
		$-\sqrt{2}e^{-x}\sin x - \sqrt{2}e^{-x}\cos x = 0$	M1	
		$e^{-x} \neq 0$	MW1	
		$\sin x + \cos x = 0$	M1	
		$\tan x = -1$ (provided $\cos x \neq 0$)	MW1	
		$x = \frac{3\pi}{4}, \frac{7\pi}{4}, \frac{11\pi}{4}, \frac{15\pi}{4}$	W1	
	(ii)	$y = -e^{-\frac{3\pi}{4}}, e^{-\frac{7\pi}{4}}, -e^{-\frac{11\pi}{4}}, e^{-\frac{15\pi}{4}}$	M1 W1	
		$r = \frac{e^{\frac{-7\pi}{4}}}{-e^{\frac{-3\pi}{4}}} = -e^{-\pi}$		
		$r = \frac{e^{-\frac{15\pi}{4}}}{-e^{-\frac{11\pi}{4}}} = -e^{-\pi}$	M1 W1	
	(iii)	$S_{\infty} = \frac{-\mathrm{e}^{-\frac{3\pi}{4}}}{1+\mathrm{e}^{-\pi}}$	M1	
		$=\frac{-e^{\frac{\pi}{4}}}{e^{\pi}+1}$	W1	14

11	(i)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 4t + 4$		AVAILABLE MARKS
		$\frac{\mathrm{d}y}{\mathrm{d}t} = 2\cos 2t$	MW2	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\cos 2t}{4t+4}$	M1	
		At stationary point:		
		$\frac{2\cos 2t}{4t+4} = 0$	M1	
		Since $0 < t < \frac{\pi}{2} \Rightarrow t \neq -1$		
		$2\cos 2t = 0$		
		$t = \frac{\pi}{4}$	W1	
		$x = \frac{\pi^2}{8} + \pi$, $y = 1$		
		x = 4.38, y = 1	MW1	
	(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{2\cos 2t}{4t+4} \right)$	M1	
		$= \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{2\cos 2t}{4t+4}\right) \times \frac{\mathrm{d}t}{\mathrm{d}x}$	M1	
		$= \left(\frac{(-4\sin 2t)(4t+4) - 4(2\cos 2t)}{(4t+4)^2}\right) \times \frac{1}{4t+4}$	M1 W2	
		$t=\frac{\pi}{4}$:		
		$\frac{d^2 y}{dx^2} = \left(\frac{-4(\pi+4)}{(\pi+4)^2}\right) \times \frac{1}{\pi+4}$		
		$=rac{-4}{(\pi+4)^2}<0$		
		$\left(\frac{\pi^2}{8} + \pi, 1\right)$ Maximum stationary point.	MW1	12

12	$\frac{\mathrm{d}V}{\mathrm{d}t} \propto -\sqrt{V}$		AVAILABLE MARKS
	$\frac{\mathrm{d}V}{\mathrm{d}t} = -k \sqrt{V}$	M1	
	$\int \frac{1}{\sqrt{V}} \mathrm{d}V = \int -k \mathrm{d}t$	M1W1	
	$2V^{\frac{1}{2}} = -kt + c$	M1 W1	
	$t = 0, V = V_0$: $2\sqrt{V_0} = c$	MW1	
	$2\sqrt{V} = -kt + 2\sqrt{V_0}$		
	$t = 1, V = \frac{4}{9} V_0$:	M1	
	$2\sqrt{\frac{4V_0}{9}} = -k + 2\sqrt{V_0}$		
	$k = \frac{2\sqrt{V_0}}{3}$	W1	
	$\sqrt{V} = \sqrt{V_0} - \frac{\sqrt{V_0}}{3}t$		
	When empty, $V = 0$:	M1	
	$\sqrt{V_0} - \frac{\sqrt{V_0}}{3}t = 0$		
	t = 3 hours	W1	10
		Total	150
			L

(i)	Tries equation for area – must have evidence of using $\frac{1}{2}r^2\theta$ in equation Correct equation for θ Correct θ (must be in radians)	M1 W1 W1	AVAILABLE MARKS
(ii)	Tries equation for arc length i.e. evidence of using $r\theta$ (allow ft for their θ in radians) Uses $8r$ Correct answer	M1 MW1 W1	6
(a)	(i) Converges	MW1	
	(ii) Oscillates	MW1	
(b)	(i) Writes as $(1 - 3x)^{\frac{1}{2}}$ Correct structure of binomial Coefficients all correct – not necessary to be simplified at this stag Powers of $(-3x)$ all correct All terms correct	MW1 M1 e W1 W1 MW1	
	(ii) Correct range	MW1	8
(a)	Correct <i>x</i> values Correct <i>y</i> values Tries to use trapezium rule <i>h</i> correct Correct answer	MW1 MW1 M1 MW1 W1	
	Note [A] Incorrect value for h – can only award M1 provided the set-up of the trapezium rule is correct for their x , y , h values i.e. max 1/5		
(b)	Tries to find x values by equating $x^2 - 6$ and $4x - x^2$ Correct x values Tries to integrate Subtracts equations Integration correct Tries to use limits Correct area	M1 W1 W1 W1 W1 W1	12
	Notes [A] Limits substituted in opposite order and leaves answer as -21.3 Lose final W1 mark only i.e. max 6/7 [B] Subtracts equations in wrong order and leaves answer as -21.3 M1 W1 M1 W1 W1(ft) M1 W0 i.e. 6/7 max [C] Incorrect limits found – M1 W0 M1 W1 W1 M1 W0 i.e. 5/7 max		
	(i) (ii) (a) (b)	 (i) Tries equation for area – must have evidence of using ¹/₂r²θ in equation Correct equation for θ Correct equation for θ Correct θ (must be in radians) (ii) Tries equation for are length i.e. evidence of using rθ (allow ft for their θ in radians) Uses 8r Correct answer (a) (i) Converges (ii) Oscillates (b) (i) Writes as (1 - 3x)^{1/2} Correct structure of binomial Coefficients all correct – not necessary to be simplified at this stag Powers of (-3x) all correct All terms correct (ii) Correct range (a) Correct x values Correct values Tries to use trapezium rule <i>h</i> correct values Tries to use trapezium rule <i>h</i> correct values for <i>h</i> - can only award M1 provided the set-up of the trapezium rule is correct for their <i>x</i>, <i>y</i>, <i>h</i> values i.e. max 1/5 (b) Tries to find <i>x</i> values by equating x² - 6 and 4x - x² Correct <i>x</i> values Tries to use limits Correct Tries (Correct Tries to Use Tries (Correct Tries (CORTECT))) (CORTECT) (CORTECT) (CORTECT) (CORTECT) (CORTECT) (CORTECT) (CORTECT) (CORTECT) (COR	(i) Tries equation for area – must have evidence of using $\frac{1}{2}r^{2}\theta$ in equation M1 Correct equation for θ W1 Correct θ (must be in radians) W1 (ii) Tries equation for are length i.e. evidence of using $r\theta$ (allow ft for their θ in radians) M1 Uses $8r$ MW1 Correct answer W1 (a) (i) Converges MW1 (ii) Oscillates MW1 (b) (i) Writes as $(1 - 3x)^{\frac{1}{2}}$ MW1 Correct structure of binomial M1 Coefficients all correct – not necessary to be simplified at this stage W1 Powers of $(-3x)^{2}$ all correct MW1 (ii) Correct range MW1 (ii) Correct range MW1 (correct x values MW1 (ii) Correct range MW1 Correct x values $x^{2} - 6$ and $4x - x^{2}$ M1 Correct x values W1 Tries to integrate M1 Subtracts equations W1 Integration correct W1 Note [A] Limits substituted in opposite order and leaves answer as -21.3 Lose final W1 mark only i.e. max 67 [B] Subtracts equations in wrong order and leaves answer as -21.3 M1 W1 M1 W1 W1(ft) M1 W0 i.e. 677 max [C] Incorrect limits found – M1 W0 M1 W1 W1 W0 i.e. 577 max

4	(a)	(i)	Tries to use function of a function	M1	AVAILABLE
			$5\sec^4(2x)$	W1	MARKS
			$2\sec(2x)\tan(2x)$	W1	
			Correct answer	W1	
		(ii)	Tries to use quotient rule correctly	M1	
			$4e^{4x}$	W1	
			$-\csc^2 x$	W1	
			Correct answer in simplified form	MW1	
	(b)	Trie	es to use volume formula	M1	
		Cor	rect expansion	W1	
		Trie	es to integrate their expansion (conditional on 1st M1 being awarded)	M1	
		2 te	rms correct	W1	
		All	terms correct	W1	
		Sub	stitutes limits	M1	
		Cor	rect answer in exact form	W1	15
		Not	es		
		[A]	If use $V = \pi \int x^2 dy$, can award M1 and nothing further		
5	(i)	Trie	es to write as partial fractions	M1	
-	(-)	Cor	rect	W1	
		Equ	ates numerators	M1	
		Sub	stitutes x values	M1	
		2 va	alues correct (cao)	W1	
		3rd	value correct (cao)	W1	
		Not	es _R		
		[A]	If omit $\frac{B}{x-2}$ can potentially award M1 W0 M1 M1 W0 W0 i.e. 3/6 m	ax	
	(ii)	Sets	s up integration as partial fractions	M1	
		Trie	es to integrate	M1	
		Bot	h ln terms correct	W1	
		(x –	$(2)^{-1}$	W1	
		Trie	es to substitute limits	M1	
		Cor	rect answer as shown	MW1	12
		Not	es		
		[A]	Incorrect answer from (1)		
		Awa	ard M1 M1 W1(if there are two correctly integrated ln terms)		
		WI	(provided similar form of reciprocal term) M1 MW0 i.e. max of 5/6		
		[B]	If correct answer just appears and no working, then assume calculate	or	
		was	used – can award M1 for trying to use calculator and MW1 for		
		corr	rect answer i.e. 2/6 max		
		[C]	If incorrect answer just appears without working then 0/6		

6	(a)	Correct shape $\pm \frac{\pi}{2}$ labels	MW1 MW1	AVAILABLE MARKS
	(b)	Tries to use $cos(x + \alpha) \equiv cos x cos \alpha - sin x sin \alpha$ Tries to equate coefficients Tries to find α Correct value of α Tries to find R Correct value of R Written in correct form	M1 M1 W1 M1 W1 W1 MW1	
		 Notes [A] If 1st 2 lines not explicitly stated but remainder of working correct can award all marks [B] If 1st 2 lines not explicitly stated and tan α incorrect – M0 M0 M0 Then award M1 W1 if <i>R</i> found correctly using Pythagoras M0 W0 if <i>R</i> found incorrectly using incorrect trig MW0 since final answer incorrect i.e. max of 2/7 	., W0	
	(c)	Writes as $(2\theta + \theta)$ Tries to use sin (A + B) Uses double angle formulae for sine and cosine Changes all terms to powers of sin θ Correct final answer	M1 M1 W1 W1	14

7	(a)	Spli [1] f	ts modulus into 2 inequalities or squares both sides for each correct <i>x</i> value	M1 W2	AVAILABLE MARKS
		Corr	rect inequalities (cao)	MW1	
	(b)	(i)	Correct <i>x</i> value	MW1	
			Correct <i>y</i> value	MW1	
			Correct asymptote	MW1	
		(ii)	Crosses at origin	MW1	
			Correct asymptote	MW1	
			Correct shape i.e. evidence of reflection in <i>x</i> -axis	MW1	
	(c)	(i)	Correct range for f	MW1	
	. /		Correct range for g	MW1	
			Notes		
			[A] Must be written as $f(x) > 0$ and $g(x) > 1$ i.e. $x > 0$ or $y > 0$ is awarded MW0		
		(ii)	Writes as $y = \dots$ and then tries to change subject	M1	
			Correct $x =$	W1	
			Correct answer and notation	MW1	
			Correct domain	MW1	
			Notes [A] Accept either $f^{-1}(x) = \cdots$ or $f^{-1}: x \to \cdots$ formats [B] Award final MW1 even if $x \in \mathbb{R}$ is omitted in domain		
		(iii)	Tries to find composite	M1	
			Correct $fg(x)$	W1	
			Correct domain	MW1	19
			Notes [A] Accept either $fg(x) = \cdots$ or $fg: x \to \cdots$ formats [B] Award final MW1 even if $x \in \mathbb{P}$ is omitted in domain		
			$[D] Award Infan W w r even if x \in \mathbb{N} is offitted in domain$		

8	Evie Evie One Trie Cor Trie Cor	dence of trying to use product rule dence of trying to use implicit differentiation e mark for each correct term es to substitute $(1, -1)$ into their derivative rect gradient es to use equation of line using their gradient rect answer only	M1 M1 W5 M1 W1 M1 W1	AVAILABLE MARKS 11
9	(a)	Rewrites as $1 \times \ln x$ Evidence of trying to use integration by parts Obtains $x \ln x$ Obtains $\int x(\frac{1}{x}) dx$ – do not penalise if dx omitted Correct answer – do not penalise if c omitted Notes [A] If set $u = 1$, $\frac{dv}{dx} = \ln x$ then can award M1 only for recognised to use parts	M1 M1 W1 W1 MW1	
	(b)	Tries to differentiate x with respect to θ Correct derivative Tries to change limits Correct limits Tries to substitute Obtains $\sqrt{4-4 \sin^2 \theta}$ Obtains $\frac{2}{3} \cos \theta d\theta$ Simplifies to $\int \frac{4}{3} \cos^2 \theta d\theta$ Tries to use $\cos 2\theta$ Correctly substituted Correct integration (cao) Correct answer (cao)	M1 W1 M1 W1 W1 W1 W1 W1 M1 W1 MW1 MW1	
		Notes[A] Error in $\frac{dx}{d\theta}$: M1 W0May gain:M1 W1 – for limitsM1 – $\sqrt{4 - 4 \sin^2 \theta}$ obtainedM1 – tries toW1 – $\sqrt{4 - 4 \sin^2 \theta}$ obtainedM1(ft) – if thW1(ft) – if correctly substitutedMax of 7/12[B] If limits are not initially changed but answer convertedand calculated correctly at the end then all marks can be aw[C] If limits are not initially changed and answer not convertedat the end then M0 W0 – for limits and MW0 for final answer	b substitute hey try to use $\cos 2\theta$ back to x varded erted back to x ver i.e. max 9/12	17

10	(i)	Evidence of trying to use p [1] for each of 2 correct ten Sets their derivative = 0 Knows $e^{-x} \neq 0$ Sets sin $x + \cos x = 0$ Obtains tan $x = -1$ Finds four x values – must	roduct rule ms be in radian format	M1 W2 M1 MW1 M1 W1 W1	AVAILABLE MARKS
		Notes [A] Error in use of product	rule M1 W0 or W1 M1 possible MW1 possible M1 – ft dependent on award of be of previous M1 marks MW0 and W0 Max of 5/8	oth	
	(ii)	Tries to find y values (can ft their values from (i))		M1	
		Four correct values		W1	
		Tries to find r (can ft their Correct ensurer (must true a	values from (1))	MI W1	
		Correct answer (must try a	2nd ratio)	W I	
	(iii)	Tries formula for sum to in Correct answer (either form	inity (can ft their a, r)	M1 W1	
11	(i)	Evidence of trying to find	$\frac{y}{r}$ using parametric differentiation	M1	
		One mark for each of corre	ct numerator and denominator	MW2	
		Sets their $\frac{dy}{dt} = 0$ (condition	al on award of 1st M1)	M1	
		dx Correct value of t	,	W1	
		Correct coordinates		MW1	
		Notes [A] Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$ but r gives max 2/6	o further use of parametric differentiation		
	(ii)	Tries to find 2nd derivative		M1	
		Tries to use parametric diff	erentiation	M1	
		Tries to use correct quotient rule		MI W2	
		Tests that 2nd derivative is negative \rightarrow maximum		WZ MW1	12
			negative maximum	141 14 1	14
		Notes [A] Incorrect $\frac{dy}{dx}$ from (i):	Can award any of 1st three M1 marks as appropriate W1 possible if one of terms is identical to that on MS MW0 Max of 4/6		

12	Sets up differential equation (allow $\frac{\mathrm{d}V}{\mathrm{d}t} = k\sqrt{V}$)	M1	AVAILABLE MARKS
	Tries to separate variables	M1	
	Correctly	W1	
	Tries to integrate	M1	
	Both sides are correct	W1	
	Finds <i>c</i> correctly	MW1	
	Uses $\frac{4}{9}$	M1	
	Finds k	W1	
	Uses $V = 0$	M1	
	Finds correct time	W1	10
	Notes		
	[A] Incorrect initial differential equation e.g. $\frac{dV}{dt} = kV$ or $\frac{dV}{dt} = kV^2$		

Award M0 M1 W1 as ft M1 W0 MW0 M1 W0 M1 W0 Max of 5/10