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1 A curve is given by the equation

x3 + 3y2 = 11

  By using implicit differentiation find dy
dx

 in terms of x and y. [4]
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2 A curve is defined parametrically by

 x = at2 and y = 3at 

 where a is a constant and t is the parameter.

 Find the Cartesian equation of this curve. [4]
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3 A mirror ABCDE is designed in the form of a sector of a circle, centred at B, together 
with two congruent right-angled triangles, BAE and BCD, as shown in Fig. 1 below.

 AC = 80 cm     AE = CD = 60 cm

D

CA

E

B

60 cm

80 cm

Fig. 1

 (i) Find the angle EBD in radians. [5]
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 (ii) Find the area of the mirror. [7]
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4 (i) Prove that

     cosec 2θ − cot 2θ  ≡ tan θ [7]
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 (ii) Hence find the exact value of tan π
8

 [2]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



*40AMT1108*

*40AMT1108*

11864

5 (a) A function f is defined by

 f: x → x2 − 8,  x ∈ ,  xG H I J0

  (i) State the range of the function f (x). [1]
 
 
 
 
 
 

  (ii) Find the inverse function f  −1(x), clearly stating its domain. [4]
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 A function g is defined by

 g: x → | x − 3 |, x ∈ 

 (iii) On the axes below sketch the graph of y = g(x). [2]

y

xO

 (iv) Find the composite function  gf(x). [2]
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 (b) The graph of the function y = h(x) is sketched in Fig. 2 below.

y

x
30

3

6

P

Q

Fig. 2

  (i) On the axes below sketch the graph of

y = 1
3

 h(3x)

   and clearly label the images of the points P and Q. [2]

y

xO
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  (ii) On the axes below sketch the graph of

y = 6 − h(x)

   and clearly label the images of the points P and Q. [2]

y

xO
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6 The expression 8 sin x + 15 cos x can be written in the form  R sin(x + α),  
where R is an integer and  0°G H I JαG H I J90°

 (i) Find the values of R and α. [6]
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 (ii) Hence, or otherwise, determine the maximum value of
18

8 sin x + 15 cos x + 23

  and find a corresponding value of x. [4]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



*40AMT1114*

*40AMT1114*

11864

7 (i) Use the Trapezium Rule with 3 ordinates to find an approximate value for

 ∫
3

2
 x2

(x + 3) (x − 1) dx [5]
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 (ii) Use partial fractions to calculate the value of 

 ∫
3

2
 x2

(x + 3) (x − 1) dx [12]
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 (iii) Explain how the use of the Trapezium Rule in (i) could be modified to obtain a 
better approximation to the integral

 ∫
3

2
 x2

(x + 3) (x − 1) dx [1]
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8 The population, P, in a housing development grows at a rate proportional to the 
population at any time t (years).

 This can be modelled by the differential equation

dP
dt  = kP

 where k is a constant.

 The initial population is P0

 (i) Show that

 P = P0ekt [6]
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 (ii) Given that the initial population doubles in 5 years, find the exact value of k. [3]
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 (iii) Find the number of years until the initial population is trebled.

   Give the answer to the nearest year. [3]
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 (iv) State a limitation of this model. [1]
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9 A curve has the equation
 y = (x − 5) ln x

 (i) Show that

    dy
dx = 1 − 5x  + ln x [4]
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 (ii) Show that the curve has a turning point between x = 2 and x = 3 [3]
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 (iii) By taking 2.4 as a first approximation to the x-coordinate of the turning point,  
use the Newton Raphson method once to find a better approximation. [5]
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10 (a) Find

 ∫ x– 12 ln x dx [7]
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 (b) Using the substitution u2 = x2 + 4 , or otherwise, find the exact value of

 0 √x2 + 4

√5

∫ dx  x3

 [8]
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11 The graphs of the curves

 y = sin 2x  and  y = cos 2x

 are shown in Fig. 3 below.

 The curves intersect at the points A and B.

0

−1 B

x

y

1

R
3π
4

π
2

π
4

A

Fig. 3

 (i) Show that the x-coordinates of A and B are π
8 and 5π

8  [4]
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 The top section of a trophy is a flat metal sheet modelled in the shape of the shaded  
region R.

 (ii) Calculate the area of this region. [6]
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 A circle has the equation

 x2 + y2 = 4

 The base of the trophy can be modelled as the solid formed when the area bounded by 
this circle, the y-axis and the line x = 1 is rotated through 2π radians about the x-axis.

 (iii) Find the exact volume of the trophy base. [6]
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12 (a) (i) Prove that the sum of n terms of an arithmetic progression with first term a 
and last term l is

     Sn  =  12 n(a + l) [4]
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  The first term of an arithmetic progression is 7 and the last term is 79
  The sum of the progression is 1075

  (ii) Find the number of terms. [3]
 
 
 
 
 
 
 
 
 
 
 
 
 

  (iii) Find the common difference. [3]
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 (b) A salesman receives a bonus at the end of each year and decides to invest this 
money in a savings account.

  At the end of Year 1 he invests £400

   At the end of Year 2 he invests a further £400 and receives 2% interest on the first 
year’s £400

   At the end of Year 3 he invests a further £400 and 2% interest is added to the total 
sum of money which he has accumulated during the first two years.

  (i) Show that he has £1,224.16 in his account at the end of Year 3 [4]
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  (ii) Assuming that the man continues to invest in this way, form and sum a series 
to prove that he will have

£20 000(1.02n − 1)

    in his account at the end of  n years. [6]
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  (iii) Hence find the least number of years until his investment exceeds £7,000 [4]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS IS THE END OF THE QUESTION PAPER
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