2018

Mathematics

Assessment Unit M3
assessing
Module M3: Mechanics 3

[AMM31]

FRIDAY 22 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all six questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
Answers should include diagrams where appropriate and marks may be awarded for them.
Take $\mathrm{g}=9.8 \mathrm{~m} \mathrm{~s}^{-2}$, unless specified otherwise.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all six questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Fig. 1 below shows a uniform lamina ABCDE made from uniform material of mass $1 \mathrm{~kg} \mathrm{~m}^{-2}$

(All dimensions are in metres)
Fig. 1
Find the distance of the centre of mass of this lamina from the edges $A B$ and $B C$.

2 Fig. 2 below shows two fixed points, P and Q, where Q is 3 m vertically below P.
A particle B of mass 2 kg is joined to P and Q by two light elastic strings, each of natural length 1 m and modulus of elasticity λ newtons.
B hangs in equilibrium $\frac{5}{3} \mathrm{~m}$ below P.

Fig. 2
(i) Show that $\lambda=6 \mathrm{~g}$.

B is now pulled vertically downwards a further distance of $\frac{1}{3} \mathrm{~m}$ and released from rest.
(ii) Prove that the periodic time of the subsequent motion of B is

$$
\begin{equation*}
2 \pi \sqrt{\frac{1}{6 g}} \text { seconds } \tag{7}
\end{equation*}
$$

3 A ship A is sailing at a constant speed of $20 \mathrm{~km} \mathrm{~h}^{-1}$ on a bearing of 090°
At noon a ship B is 35 km from A on a bearing of 150°
In order to intercept A, B sails at a constant speed of $18 \mathrm{kmh}^{-1}$ on a bearing of θ°
(i) Find the two possible values of θ.
(ii) Find the earliest time at which B will intercept A .

4 Fig. 3 below shows three light uniform rods each of length $3 a$ metres joined together in the shape of an equilateral triangle ABC .
D and E are points on AB and AC respectively, such that $\mathrm{AD}=\mathrm{AE}=2 a$ metres. M is the midpoint of $B C$.

Fig. 3
Particles of mass $m, 5 m, 2 m$ and $k m$ are fastened at the points B, D, E and C, respectively. The centre of mass, G, of this system of four particles lies on AM.
(i) Find k.
(ii) Hence find the distance AG in terms of a.

P and Q are fixed points with position vectors

$$
\left(\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right) \mathrm{m} \text { and }\left(\begin{array}{c}
-4 \\
2 \\
10
\end{array}\right) \mathrm{m}
$$

respectively.
A particle T of mass 6 kg moves along the line $P Q$, passing through P with a speed of $3 \mathrm{~ms}^{-1}$ T is acted on by forces

$$
\mathbf{F}_{\mathbf{1}}=\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right) \mathrm{N} \text { and } \mathbf{F}_{\mathbf{2}}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \mathrm{N}
$$

The resultant force acts from P towards Q .
(i) Show that

$$
\mathbf{F}_{2}=\left(\begin{array}{c}
-6 d-3 \\
3 d+1 \\
6 d-2
\end{array}\right) \mathrm{N}
$$

where d is an unknown constant.

T passes through Q with a speed of $12 \mathrm{~ms}^{-1}$
(ii) Use the work-energy principle to find d.

6 A particle P of mass $m \mathrm{~kg}$ is fastened to one end of a light elastic string of natural length l metres and modulus of elasticity $\frac{3 \sqrt{3} m \mathrm{~g}}{2} \mathrm{~N}$.

The other end of the string is fastened to a fixed point Q at the top of a rough plane inclined at 60° to the horizontal.
Prests on the plane a distance $\frac{3 l}{2}$ from Q down a line of greatest slope of the plane.
P is about to slide up the plane.
(i) Draw a diagram to show all the external forces acting on P .
(ii) Show that the coefficient of friction between P and the plane is $\frac{\sqrt{3}}{2}$

When P is held on the plane a distance l from Q down a line of greatest slope and released from rest, it slides down the plane.
(iii) Use the work-energy principle to find the distance of P from Q when P next comes to rest.

