2018

Mathematics

Assessment Unit F2
 assessing
 Module FP2: Further Pure Mathematics 2
 [AMF21]
 TUESDAY 19 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all eight questions.

Show clearly the development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Find, in radians, the general solution of the equation

$$
\begin{equation*}
\sin 2 \theta=1+\cos 2 \theta \tag{6}
\end{equation*}
$$

2 (i) Show that for $r \geqslant 1$

$$
\begin{equation*}
\frac{1}{r(r+1)}-\frac{1}{(r+1)(r+2)}=\frac{2}{r(r+1)(r+2)} \tag{1}
\end{equation*}
$$

(ii) Hence or otherwise show that

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)}=\frac{n(n+3)}{4(n+1)(n+2)} \tag{3}
\end{equation*}
$$

(iii) Using (ii) evaluate

$$
\begin{equation*}
\sum_{r=1}^{\infty} \frac{1}{r(r+1)(r+2)} \tag{1}
\end{equation*}
$$

3 Using partial fractions, show that

$$
\begin{equation*}
\int_{0}^{1} \frac{x+3}{(x+1)\left(x^{2}+4 x+5\right)} \mathrm{d} x=\frac{1}{2} \ln 2 \tag{10}
\end{equation*}
$$

4 (i) Given that

$$
\mathrm{f}(x)=\mathrm{e}^{-m x}-(1+2 x)^{-n}
$$

find the Maclaurin expansion for $\mathrm{f}(x)$ up to and including the term in x^{2}
(ii) Given that the first non-zero term in this expansion is $-4 x^{2}$, find the values of m and n. [3]

5 The equation of the tangent to the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

at any point $(a \cos \theta, b \sin \theta)$ on the ellipse is given by

$$
\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1
$$

(i) Tangents are drawn to this ellipse at the points $(a \cos \alpha, b \sin \alpha)$ and $(a \cos \beta, b \sin \beta)$. The tangents are perpendicular.

Show that

$$
\begin{equation*}
\tan \alpha \tan \beta=\frac{-b^{2}}{a^{2}} \tag{3}
\end{equation*}
$$

(ii) A line joins $\mathrm{P}(a \cos \theta, b \sin \theta)$ to the fixed point $\mathrm{S}(a, 0)$ on this ellipse. As θ varies, find the cartesian equation of the locus of the midpoint of the chord PS.

6 Using the principle of mathematical induction, prove that for $n \geqslant 0$

$$
\begin{equation*}
5^{n}+11^{n+1} \text { is divisible by } 6 \tag{6}
\end{equation*}
$$

7 (i) Given that

$$
(\cos \theta+\mathrm{i} \sin \theta)^{n} \equiv \cos n \theta+\mathrm{i} \sin n \theta
$$

when n is a positive integer, deduce that the statement is also true when n is a negative integer.
(ii) Using (i), show that if $Z=\cos \theta+\mathrm{i} \sin \theta$, then

$$
\begin{equation*}
Z^{n}+Z^{-n}=2 \cos n \theta \tag{2}
\end{equation*}
$$

(iii) By considering $\left(Z+Z^{-1}\right)^{4}$, show that

$$
\begin{equation*}
\cos ^{4} \theta=\frac{1}{8}(\cos 4 \theta+4 \cos 2 \theta+3) \tag{3}
\end{equation*}
$$

(iv) Hence or otherwise find the exact value of

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{6}} \cos ^{4} \theta \mathrm{~d} \theta \tag{5}
\end{equation*}
$$

8 (i) Find the general solution of the differential equation

$$
\lambda \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\left(\lambda^{2}+1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+\lambda y=0
$$

(a) when $\lambda \neq 0$ and $\lambda \neq 1$
(b) when $\lambda=1$
(ii) Hence or otherwise determine the solution of

$$
2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+5 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=2 x^{2}-1
$$

where $y=9$ when $x=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$

