

Rewarding Learning

ADVANCED SUBSIDIARY (AS) General Certificate of Education 2018

Mathematics

Assessment Unit C2 assessing Module C2: AS Core Mathematics 2

Centre Number

Candidate Number

AMC21

[AMC21] WEDNESDAY 23 MAY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer all eight questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in black ink only. Do not write with a gel pen.

Questions which require drawing or sketching should be completed using an H.B. pencil. All working should be clearly shown in the spaces provided. Marks may be awarded for

partially correct solutions. Answers without working may not gain full credit.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A copy of the Mathematical Formulae and Tables booklet is provided.

Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log_e z$

24AMC2101

BLANK PAGE

DO NOT WRITE ON THIS PAGE

24AMC2102

1	Use the Trapezium Rule with five ordinates to find an estimate of
	$\int_{1}^{2} \sqrt{1+2x^2} \mathrm{d}x $ [6]
	[Turn over
11041	

The	e equation of a circle is
	$x^2 + y^2 + 2x - 4y = 0$
(i)	Find the centre and radius of this circle. [4]

Œ
Rewarding I
Leeming
Acwarding
E Lawring
CE Rewarding
Ð
(A=
Rewarding
Looming
CCG Rewarding I
Ð
Œ
Rewarding I
Learning
Rewarding
Œ
Ð
Learning
Rewarding
E Leeming
Ge
Ð
(AE
Rewarding
Looming
CE Rewarding
Ð
Œ
Ð
Coming Containing
Researching
Looming
CCE Rewarding I
Œ
20
Learning
Rewarding I
Looming
CE Remarking I
Ð
GE
Rewarding
Learning
CCC Rewarding i
20 Learning
Œ
Losming
Rowarding I
Learning
CE Remarking
20

24AMC2105

 ,	L ·
	[Turn o

24AMC2106

CC. 20 Rowards C 2D CC. Ð a 20 Learning 2D C. D Ca. a

DD y Learning

	······
	······
	······
	······
	••••••
••••••	••••••
	······
	······
	······
	······
	······
	••••••
	••••••
	·····
	·····•
	······
	••••••
	······
	••••••
	••••••
	[Turn over

24AMC2107

4 A wing of a toy aeroplane can be modelled by two triangles ABC and ACD joined together to make a quadrilateral ABCD, as shown in **Fig. 2** below.

AB = 3.5 cm BC = 6.9 cmThe area of the triangle ABC is 9.8 cm^2

(i) Find the size of CBA.

11041

24AMC2108

20 7 Learning a 20 y Loaming CC. Ð a Ð a Ð a Ð Ca. Ð a Ð a Ð a 2D a D CC. Deaming C. 200 C 20 7 Learning CC. D CC. 200 7 Learning CC. 20 7 Learning C. D C. 2D CC. 20 7 Learning Rewards CC Rowards DD C. Ð

a

[3]

A=	
Rewarding	
20	
Learning	
Œ	
Rowarding I	
E	
(Channe)	
Rewarding J	
20	
Learning	
Ge	
Researching I	
Ð	
Learning	
CCC Remarking	
3	
Learning	
Q=	
Rewarding I	
Ð	
Learning	
Œ	
30	
Looming	
A:	
Rewarding I	
Ð	
g Learning	
Œ	
Rewarding I	
E	
P:	
Rewarding I	
20	
Learning	
Œ	
Rewarding I	
Ð	
y Leeming	
CCE Rewarding I	
CCG Rowarding i	
CCG Rewarding I Deserving CCGG Rewarding I	

Find the size of CÂD.	[6]

5	(i)	Use the binomial theorem to expand
•	(-)	ese une emplimar meetem to expand

 $(3+x)^5$

•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	

24AMC2110

[Turn over

24AMC2111

$(3+x)^5 - (3-x)^5 \equiv Px + Qx^3 + Rx^5$

y Learning CC Reserved

De la contra de la

j Learthy Description j Learthy Description j Learthy Description Description Description Description

Texastrito 7 Levendry Romanter

Rosertin Rosertin Rosertin Rosertin Rosertin Rosertin Rosertin Rosertin Rosertin

C

24AMC2112

[Turn over	
[Turn over	
[Turn over.	
[Turn over	
[Turn over	
	[Turn over

24AMC2113

$\frac{(1 - \cos \theta) (1 + \cos \theta)}{\sin \theta \cos \theta} \equiv \tan \theta$	[4]
	• • • • • • • •

y Learning Research Research D 2 Loarning Research D 2 Loarning i Learning Rosardo 2 Learning 7 Learning Rosardo Rosardo Reverter 2 Learning 7 Learning Reverter 20 2 Learning 2 2 Learning 2 Lear 2 Lawring Reverses y Learning Reverses

(ii) Hence, solve the equation

$$\frac{(1 - \cos \theta) (1 + \cos \theta)}{\sin \theta \cos \theta} = 2 - \tan^2 \theta$$

24AMC2115

- 20 a 20 y Loaming CC. D Romanda Ð a Ð a Ð Ca. D a Ð C. Ð Ca. 20 7 Learning Ca. Ð CC. Deaming C. 200 C 2D CC. D a Ca. D C. D a 2D C. 20 J. Learning Reward 20 J. Learning Reasert D CC. Ð a
- 7 Animator Paul is designing a new character, Alfie, for a game as shown in **Fig. 3** below. **Fig. 4** below shows a circle of radius *r* and centre O. AB is a chord of the circle with $A\hat{O}B = \theta$ radians.

Paul models Alfie's hat as the minor segment and his face as the major segment of this circle.

(i) Find, in terms of *r* and *θ*, the area of Alfie's hat. [3]

11041

24AMC2116

In the model, the area of Alfie's face is *m* times the area of his hat.

(ii)	Find m	in terms	of θ and π .
	1 1110 111		01 0 una <i>n</i> .

[5]

[Turn over

24AMC2117

8 (a) Given that		(a)	Given	that
-------------------------	--	------------	-------	------

 $\frac{5^{x-1}}{3^{2x}} = 27$

••••											
	 	•••••		 •••••						 •••••	•••••
•••••	 •••••	•••••	•••••	 •••••	•••••	•••••		•••••		 •••••	•••••
••••	 •••••	•••••		 •••••	•••••			••••		 •••••	
••••	 	•••••		 				•••••		 •••••	
••••	 	•••••		 						 •••••	
••••	 	•••••		 				•••••		 •••••	
•••••	 			 						 	
•••••	 			 						 	
•••••	 			 						 	
••••	 •••••	•••••	•••••	 •••••	•••••		• • • • • • • • • • •	•••••		 	•••••
•••••	 •••••	•••••	•••••	 •••••	•••••				• • • • • • • • • • •	 •••••	•••••
••••	 •••••	••••	• • • • • • • • • • •	 •••••	•••••			••••	• • • • • • • • • • •	 ••••	••••
••••	 	•••••		 						 	
••••	 	•••••		 •••••				•••••		 •••••	
••••	 	•••••		 •••••		• • • • • • • • •		•••••	• • • • • • • • • • •	 •••••	•••••
•••••	 	•••••		 						 •••••	
•••••	 	•••••		 						 •••••	
•••••	 	• • • • • • • • • • • •		 						 •••••	
•••••	 			 				••••		 •••••	
•••••	 	• • • • • • • • • • • • •	•••••	 	•••••			••••	• • • • • • • • • • •	 	
•••••	 	•••••		 •••••	•••••	• • • • • • • • •	•••••	•••••	• • • • • • • • • • •	 •••••	

24AMC2118

[Turn over

24AMC2119

24AMC2120

	log(4x + 1), lo	$\log(2x+3), \log(x)$	(x + 3)
Find the value of	f <i>x</i> .		
••••••			
·····			
·····			

24AMC2121

BLANK PAGE

DO NOT WRITE ON THIS PAGE

24AMC2122

BLANK PAGE

DO NOT WRITE ON THIS PAGE

11041

24AMC2123

DO NOT WRITE ON THIS PAGE

For Examiner's use only		
Question Number	Marks	
1		
2		
3		
4		
5		
6		
7		
8		
Total Marks		
	•	

Examiner Number

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

11041/3

24AMC2124