

Rewarding Learning

Candidate Number
ADVANCED SUBSIDIARY (AS)
General Certificate of Education 2018

Mathematics

Assessment Unit C2
assessing
Module C2:
AS Core Mathematics 2

[AMC21] WEDNESDAY 23 MAY, MORNING
 AMC21

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
You must answer all eight questions in the spaces provided.
Do not write outside the boxed area on each page or on blank pages.
Complete in black ink only. Do not write with a gel pen.
Questions which require drawing or sketching should be completed using an H.B. pencil. All working should be clearly shown in the spaces provided. Marks may be awarded for partially correct solutions. Answers without working may not gain full credit.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$ 11041

1 Use the Trapezium Rule with five ordinates to find an estimate of

$$
\int_{1}^{2} \sqrt{1+2 x^{2}} \mathrm{~d} x
$$

2 The equation of a circle is

$$
x^{2}+y^{2}+2 x-4 y=0
$$

（i）Find the centre and radius of this circle．

\qquad
(ii) Find the equation of the tangent to this circle at the point $(-3,3)$.

3 (a) Find

$$
\begin{equation*}
\int 2 x^{3}-\sqrt{x}+\frac{1}{x^{4}}-3 \mathrm{~d} x \tag{5}
\end{equation*}
$$

\qquad
(b) The curves with equations $y=x^{2}-5 x+8$ and $y=-x^{2}+5 x-4$ intersect at the points $(2,2)$ and $(3,2)$ as shown in Fig. 1 below.

Fig. 1

Find the area enclosed by the curves.

24AMC2107

4 A wing of a toy aeroplane can be modelled by two triangles $A B C$ and $A C D$ joined together to make a quadrilateral ABCD , as shown in Fig. 2 below.

Fig. 2
$\mathrm{AB}=3.5 \mathrm{~cm} \quad \mathrm{BC}=6.9 \mathrm{~cm}$
The area of the triangle ABC is $9.8 \mathrm{~cm}^{2}$
(i) Find the size of CBA. [3]
\qquad

$$
\mathrm{CD}=11.6 \mathrm{~cm}
$$

$\mathrm{ADC}=28^{\circ} \quad \mathrm{C} \hat{\mathrm{A}} \mathrm{D}$ is obtuse.
(ii) Find the size of CÂD.

5 (i) Use the binomial theorem to expand

$$
(3+x)^{5}
$$

in ascending powers of x.
\qquad
(ii) Hence, or otherwise, find the values of P, Q and R for which

$$
\begin{equation*}
(3+x)^{5}-(3-x)^{5} \equiv P x+Q x^{3}+R x^{5} \tag{4}
\end{equation*}
$$

6 （i）Prove that

$$
\begin{equation*}
\frac{(1-\cos \theta)(1+\cos \theta)}{\sin \theta \cos \theta} \equiv \tan \theta \tag{4}
\end{equation*}
$$

(ii) Hence, solve the equation

$$
\frac{(1-\cos \theta)(1+\cos \theta)}{\sin \theta \cos \theta}=2-\tan ^{2} \theta
$$

for $0 \leqslant \theta \leqslant 2 \pi$

7 Animator Paul is designing a new character, Alfie, for a game as shown in Fig. 3 below. Fig. 4 below shows a circle of radius r and centre O .
AB is a chord of the circle with $\mathrm{AO} \mathrm{B}=\theta$ radians.

Fig. 3

Fig. 4

Paul models Alfie's hat as the minor segment and his face as the major segment of this circle.
(i) Find, in terms of r and θ, the area of Alfie's hat.
\qquad

In the model, the area of Alfie's face is m times the area of his hat.
(ii) Find m in terms of θ and π.

8 (a) Given that

$$
\frac{5^{x-1}}{3^{2 x}}=27
$$

find x.
（b）The first three terms in an arithmetic progression are

$$
\log (4 x+1), \quad \log (2 x+3), \quad \log (x+3)
$$

Find the value of x ．
\qquad

THIS IS THE END OF THE QUESTION PAPER

DO NOT WRITE ON THIS PAGE

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	

\square

Permission to reproduce all copyright material has been applied for.

In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

