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1 A curve is defined by the parametric equations

 x = 2t     y = 4t2 + t

 Find the gradient of the curve when t = 4 [5]
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2 The line L1 has vector equation

6     2
 r1 = (  1  ) + λ ( 1 )−1     0

 The line L2 passes through the points (2, 3, −1) and (4, −1, 1).

 (i) Find the vector equation of L2 [3]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1
4x + 1



[Turn over

*24AMC4105*

*24AMC4105*

11211

 (ii) Show that L1 and L2 are perpendicular. [4]
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3 The functions f and g are defined by

   f(x) = √2x + 5 for x∈ℜ, xG H I J−2.5

   g(x) = 1
4x + 1 for x∈ℜ, x ≠ −0.25

 (i) State the range of f. [1]
 
 

 (ii) Find the inverse function f −1(x) stating the domain of this function. [4]
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 (iii) Solve the equation fg(x) = 3 [4]
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4 (i) On the axes below sketch the graph of  y = sec x  for  0G H I JxG H I J2π [3]

y

x

 Fig. 1 below shows a cable reel.

Fig. 1

 The volume of this reel can be modelled by rotating the area bounded by the graph of  
y = sec x, the x-axis and the ordinates x = 2 and x = 3 through 2π radians about  
the x-axis. 
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 (ii) Find the volume of this reel. [5]
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5 Solve the equation

 sin 2x = tan x    for 0°G H I JxG H I J360° [9]
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6 A curve has the equation

 y e−2x = 2x + y2

 (i) Show that the gradient function of this curve is given by

 
2 + 2y e−2x

e−2x − 2y  [7]
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 The point P (0,1) lies on this curve.

 (ii) Find the equation of the normal to this curve at the point P. 
  Give your answer in the form ax + by + c = 0, where a, b and c are integers. [4]
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7 Newton’s law of cooling states that the rate at which the temperature of a liquid is 
falling is  proportional to the difference between the temperature of the liquid and the 
temperature of its surroundings at that instant.

 A mug of hot coffee is placed in a room which has a constant temperature  
of 20°C.

 After t minutes the coffee has cooled to θ°C.

 The rate at which the coffee is cooling can be modelled by the differential equation

 dθ
dt  = −k(θ − 20)    where k is a constant.

 At time t = 0, the coffee has a temperature of 100°C.
 At t = 5, the coffee has a temperature of 68°C.

 (i) Show that

 θ = 20 + 80e−(1
5ln5

3)t [9]
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 (ii) Find the temperature of the coffee at t = 10 [1]
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8 (a) Find

 ∫ x cot2x dx [6]
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 (b) (i) Write in partial fractions

 
2

x(2x − 1) [2]
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  (ii) Use the substitution  x = u2, where u is positive, to show that

 
∫

9

1  
1

x(2√x − 1)
 dx = 2ln (a

b)
   where a and b are integers to be found. [8]
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THIS IS THE END OF THE QUESTION PAPER
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