Mathematics

Assessment Unit F3
 assessing
 Module FP3: Further Pure Mathematics 3

[AMF31]

MONDAY 26 JUNE, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all seven questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$, where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Find the angle between the planes

$$
x-z=23
$$

and

$$
\begin{equation*}
x+y-2 z=15 \tag{4}
\end{equation*}
$$

2 (i) Differentiate and simplify:
(a) $\tan ^{-1}(\sinh x)$
(b) $\sin ^{-1}(\tanh x)$
(ii) Hence express as simply as possible

$$
\begin{equation*}
\tan ^{-1}(\sinh x)-\sin ^{-1}(\tanh x) \tag{1}
\end{equation*}
$$

3 The paths of submarines Adamant and Diamant are shown in Fig. 1 below.

Fig. 1
The Adamant passes through the point $\mathrm{A}(1,3,2)$ and moves along the line

$$
\mathbf{r}_{1}=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)+p\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right)
$$

and the Diamant passes through the point $\mathrm{D}(-4,-6,7)$ and moves along the line

$$
\mathbf{r}_{2}=\left(\begin{array}{c}
-4 \\
-6 \\
7
\end{array}\right)+q\left(\begin{array}{c}
-2 \\
-2 \\
3
\end{array}\right)
$$

where the unit of length is the cable (0.1 nautical miles).
The shortest distance between their paths is BC.
(i) Find the unit vector $\hat{\mathbf{n}}$ in the direction of $\overrightarrow{\mathrm{BC}}$
(ii) By writing $\overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CD}}$ and evaluating $\overrightarrow{\mathrm{AD}}$. $\hat{\mathbf{n}}$, find the distance BC .

4 (i) Prove that

$$
\begin{equation*}
\tanh ^{-1} x \equiv \frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) \tag{4}
\end{equation*}
$$

(ii) By using integration by parts, and without fully evaluating either integral, show that

$$
\int_{k}^{\frac{(1-k)}{(1+k)}} \frac{\ln \left(\frac{1}{x}\right)}{1-x^{2}} \mathrm{~d} x=\int_{k}^{\frac{(1-k)}{(1+k)}} \frac{\tanh ^{-1} x}{x} \mathrm{~d} x
$$

where $0<k<\sqrt{2}-1$

5 Tetra-Tents are designing a new model as shown in Fig. 2 below.

Fig. 2

They intend to attach a doorbell at position P .
The plane ACD has equation \quad r. $\left(\begin{array}{c}2 \\ -3 \\ -1\end{array}\right)=3$

The line AB has equation

$$
\frac{x-1}{-1}=\frac{y+1}{1}=\frac{z-3}{-4}
$$

The point $\mathrm{P}\left(2 \frac{1}{3},-\frac{2}{3}, 4\right)$ lies in the plane ABC .
(i) Find the coordinates of the apex, A.
(ii) Find an equation of the line AC.

6 (i) Using the exponential definitions of $\sinh x$ and $\cosh x$, prove the identity

$$
\begin{equation*}
\sinh 2 x \equiv 2 \sinh x \cosh x \tag{3}
\end{equation*}
$$

(ii) Using the substitution $x+2=3 \cosh u$, prove that

$$
\begin{equation*}
\int \sqrt{(x+5)(x-1)} \mathrm{d} x=\frac{1}{2}(x+2) \sqrt{x^{2}+4 x-5}-\frac{9}{2} \ln \left[(x+2)+\sqrt{x^{2}+4 x-5}\right]+c \tag{10}
\end{equation*}
$$

7 The integral I_{n} is defined as

$$
I_{n}=\int \frac{x^{n}}{\sqrt{a^{2}-x^{2}}} \mathrm{~d} x
$$

where $n \geqslant 0$
(i) Derive the reduction formula,

$$
n I_{n}=-x^{n-1} \sqrt{a^{2}-x^{2}}+a^{2}(n-1) I_{n-2}
$$

where $n \geqslant 2$
(ii) Hence find

$$
\begin{equation*}
\int \frac{\left(x^{3}+3 x^{2}+3 x+7\right)}{\sqrt{15-2 x-x^{2}}} d x \tag{9}
\end{equation*}
$$

THIS IS THE END OF THE QUESTION PAPER

