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Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Find the angle between the planes

    x – z = 23

    and

    x + y – 2z = 15 [4]

2 (i) Differentiate and simplify:

  (a) tan–1 (sinh x) [4]

  (b) sin–1 (tanh x) [4]

 (ii) Hence express as simply as possible

       tan–1 (sinh x) – sin–1 (tanh x) [1]
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3 The paths of submarines Adamant and Diamant are shown in Fig. 1 below.

A

B

D

C

Fig. 1

 The Adamant passes through the point A(1, 3, 2) and moves along the line

  1  2
 r1 = 3 + p 1    (  2  )  ( –1)
 and the Diamant passes through the point D (–4, –6, 7) and moves along the line 

  –4  –2
 r2 = –6 + q –2    (  7  )  (  3  )
 where the unit of length is the cable (0.1 nautical miles).
 The shortest distance between their paths is BC.

→
 (i) Find the unit vector n̂ in the direction of BC [3]

                                  →      →      →      →                            → 
 (ii) By writing  AD = AB + BC + CD  and evaluating AD . n̂,  find the distance BC. [4]
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4 (i) Prove that
 
 tanh–1 x ≡ 1 ln 1 + x
  2  1 – x [4]                                                                                             (        )
 (ii) By using integration by parts, and without fully evaluating either integral, show that

 ∫k

(1 − k)
(1 + k)     

 
ln (1

x)
1 – x2 

 dx  =  ∫k

(1 − k)
(1 + k)     

 
tanh–1 x

x
 dx 

  where 0 < k < √2 – 1 [7]
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5 Tetra-Tents are designing a new model as shown in Fig. 2 below.

A

D B

C P

Fig. 2

 They intend to attach a doorbell at position P.

  2  
 The plane ACD has equation r . –3  = 3   (  –1 )  

 The line AB has equation x – 1 = y + 1 = z – 3
    –1 1 –4

 The point P (2 1 , – 2 , 4) lies in the plane ABC.    3 3

 (i) Find the coordinates of the apex, A. [4]

 (ii) Find an equation of the line AC. [10]
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6 (i) Using the exponential definitions of sinh x and cosh x, prove the identity

 sinh 2x ≡ 2 sinh x cosh x [3]

 (ii) Using the substitution  x + 2 = 3 cosh u,  prove that

 ∫ √(x + 5)(x – 1) dx = 1 (x + 2) √x2 + 4x – 5  –    ln [(x + 2) + √x2 + 4x – 5]  +  c 
  2   

9
2   

[10]

7 The integral In is defined as

 In  = ∫  xn dx  
  √a2  – x2 

 where  n G H I J 0

 (i) Derive the reduction formula,

n In = –xn–1 √a2 – x2 + a2 (n – 1)  In–2

 where  n G H I J 2 [8]

 (ii) Hence find

 ∫  (x
3 + 3x2 + 3x + 7)  dx

  √15 – 2x – x2 [9]

THIS IS THE END OF THE QUESTION PAPER
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