

ADVANCED General Certificate of Education 2017

Mathematics

Assessment Unit C3 assessing Module C3: Core Mathematics 3

Centre Number

Candidate Number

AMC31

[AMC31] THURSDAY 1 JUNE, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer all eight questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in black ink only. Do not write with a gel pen.

Questions which require drawing or sketching should be completed using an H.B. pencil. All working should be clearly shown in the spaces provided. Marks may be awarded for partially correct solutions. **Answers without working may not gain full credit**. Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A copy of the Mathematical Formulae and Tables booklet is provided.

Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log_e z$ 10387

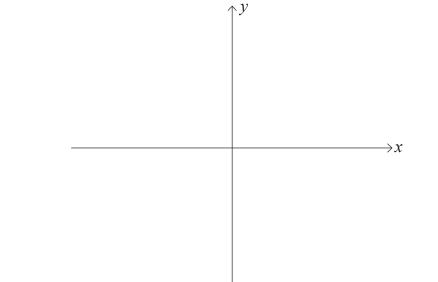
24AMC3101

and	$y = 4 \cos x$	
from $x = \frac{-\pi}{2}$ to $x = \frac{\pi}{2}$		
Find the area of the tray.		

The tray on a child's high chair can be modelled as the area between the curves

	······
	Гтим оток
10387	[Turn over

24AMC3103


2	The speed, y	m s ⁻¹ , of a	an accelera	ting car is	recorded ev	ery second	, <i>x</i> , for six s	seconds.
	Time x	0	1	2	3	4	5	6
	Speed y	0	5.3	8.1	10.3	11.9	13.0	14.1
	Use Simpson	i's rule to	estimate th	e distance	the car trave	els during t	he six seco	nds. [4]
								••••••
								••••••
10387								

24AMC3104

3 The function f(x) is defined as

$$f(x) = |2x - 1|$$

(i) On the axes below sketch the graph of
$$y = f(x)$$
.

(ii) Describe fully the two successive transformations that will map y = f(x) onto

y = 3 - f(x)[4] [Turn over

24AMC3105

10387

[2]

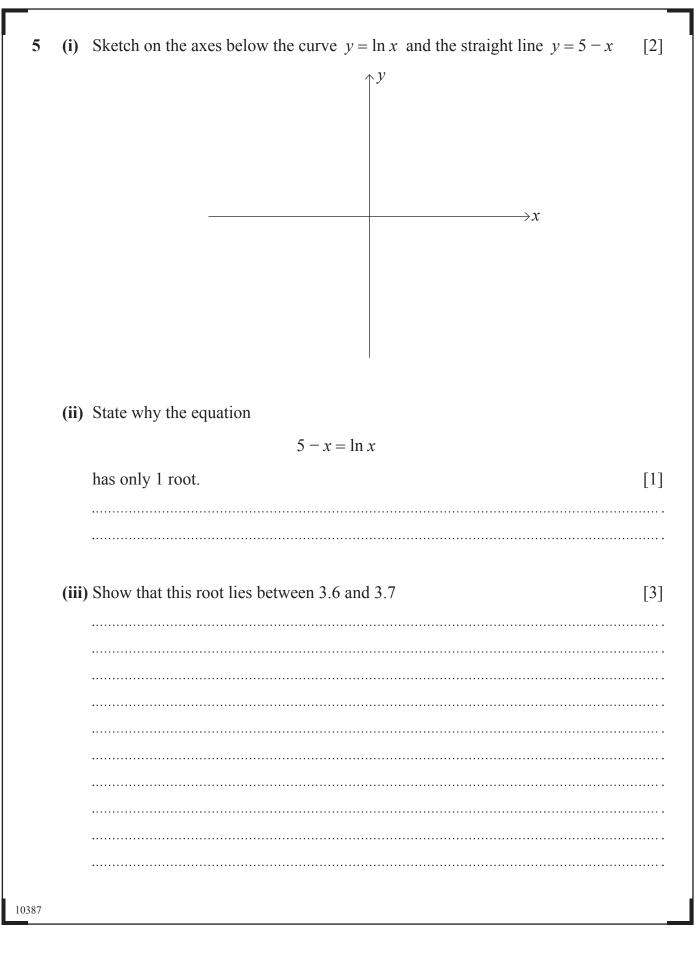
$x = 3 \tan \theta$	$y = 2 \sec \theta$	[

y Learning CC Reserved

Reward

Rosertin 2 Learning Rosertin

G



24AMC3106

	$\frac{\operatorname{cosec}\theta}{\operatorname{cosec}\theta - \sin\theta} \equiv \sec^2\theta$	[5]
llurn o		[Turn o

24AMC3107

24AMC3108

•••		
•••		
•••		
•••		
•••		
• •		
•••		
• •		
• •		
•••		
•••		
•••		
• •		
•••		•••••
	Гти	ırn (

24AMC3109

24AMC3110

	and state if it is a maximum or a minimum.
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

6

Find the turning point on the curve

	[Turn ov	'er
10387		

24AMC3111

7 (i)	Write in partial fractions
	$6r^2$
	$\frac{6x^2}{(1-x)(1+2x)}$ [8]
10387	

24AMC3112

[Turn over

24AMC3113

(ii) Hence find, in ascending powers of x, the binomial expansion of

$$\frac{6x^2}{(1-x)(1+2x)}$$

as far as the term in x^3	[8

10387

20 y Learning
G
Research
A:
Learning
Rewarding
Rowerdon Proverting 200
G
G
Rewarding
œ
y Learning
20 7 Learning
A
Learning
Rewardin
A
Rewardin
G
G
Rowardin
œ
r Learning Research
Rewardin
E
C
CC Ronartin DD y Learning
T Learning CCC Rewarding
G
a
P
Reservin
E
a
Reserved
G

24AMC3114

[Turn over

24AMC3115

8 (a) (i)	Differentiate $\sqrt{\frac{x}{x^2+1}}$ [3]	51
	$\sqrt{x^2+1}$	5]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
10387		

y Learning CC Reserved

Reserved 2 Learning Research

200

Rowerter

Rosertin 2 Learning Rosertin

Reserved y Leastwing Reserved Reserved

Reserved 2 Learning Research

Roards Parties Parties Parties Parties

G

24AMC3116

10387

•••••	
	[Turn over

24AMC3117

10387

y Learning CC Reserved 20 J Loaming C. 20 7 Learning Rowards 20 7 Lawriting CC. 20 2 Learning C. 200 C. 200 Rowerde 200 7 Leventing CC. Rosertin 2 Learning Rosertin C. 20 J Learning Roserte CC. G Reserved C. C. Roards Parties Parties Parties Parties C.

24AMC3118

(0) Find $\int \frac{2x^2}{x^3 - 1} + \csc^2(3 - 7x) + \frac{x + 1}{x^2} dx$ [6]
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
87	

•••••	 	
••••••	 	
••••••	 	
••••••	 	
••••••	 	

BLANK PAGE

DO NOT WRITE ON THIS PAGE

24AMC3122

BLANK PAGE

DO NOT WRITE ON THIS PAGE

10387

24AMC3123

DO NOT WRITE ON THIS PAGE

For Examiner's use only		
Marks		

Examiner Number

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

10387/5

24AMC3124