Rewarding Learning
ADVANCED SUBSIDIARY (AS)

General Certificate of Education

 2017
Mathematics

Assessment Unit F1
 assessing
 Module FP1: Further Pure Mathematics 1

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all six questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all six questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 S is the set of non-zero numbers of the form $p+q \sqrt{3}$, where p, q are rational.
(i) Prove that S is closed under multiplication.

Assume that the identity, under multiplication, of S is 1
(ii) Find the inverse of $p+q \sqrt{3}$ under multiplication, giving your answer in the form $a+b \sqrt{3}$
You may assume that $p^{2} \neq 3 q^{2}$

2 The matrix \mathbf{M} is given by

$$
\mathbf{M}=\left(\begin{array}{ccc}
1 & 1 & -2 \\
0 & -3 & 0 \\
2 & 0 & -2
\end{array}\right)
$$

(i) Show that the only real eigenvalue of \mathbf{M} is -3
(ii) For the eigenvalue -3 , find a corresponding unit eigenvector.

3 The circles C_{1} and C_{2} are given by the following equations

$$
\begin{array}{ll}
\mathrm{C}_{1} & x^{2}+y^{2}+2 x-8 y+4=0 \\
\mathrm{C}_{2} & x^{2}+y^{2}-10 x-26 y+142=0
\end{array}
$$

(i) Show that these circles touch externally.

The line $y=3 x+k$ is a tangent to the circle C_{1}
(ii) Find the exact values of k.

4 (a) Describe fully the transformation represented by the matrix $\left(\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right)$
(b) (i) Find the image of the circle

$$
x^{2}+y^{2}=9
$$

under the transformation represented by the matrix $\left(\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right)$
(ii) Find the area enclosed by the image curve.
$5 \quad$ Let $\mathbf{N}=\left(\begin{array}{ccc}0 & -1 & 2 \\ 1 & 1 & 2 \\ -1 & p & 1\end{array}\right)$
(i) Find the rational value of p for which this matrix does not have an inverse.
(ii) If $p=3$, find the inverse of \mathbf{N}
(iii) Hence solve the following system of equations

$$
\begin{align*}
-y+2 z & =-5 \\
x+y+2 z & =1 \\
-x+3 y+z & =19 \tag{4}
\end{align*}
$$

6 (a) The complex number z is such that $|z|=8, \arg z=\frac{\pi}{6}$

Express z in the form $a+b \mathrm{i}$, where a and b are real numbers.
(b) (i) Sketch on an Argand diagram the locus of those points u which satisfy

$$
\begin{equation*}
|u-(7+2 \mathrm{i})|=\sqrt{20} \tag{3}
\end{equation*}
$$

(ii) On the same diagram sketch the locus of those points v which satisfy

$$
\begin{equation*}
\arg \{v-(1+2 i)\}=\frac{\pi}{4} \tag{3}
\end{equation*}
$$

(iii) Find the points of intersection of these loci.

